
www.manaraa.com

www.manaraa.com

KNOWLEDGE-BASED
SOFTWARE ENGINEERING

edited by

Dorothy Setliff
University of Pittsburgh

Howard Reubenstein
Concept Five Technologies

A Special Issue of
A U T O M A T E D S O F T W A R E E N G I N E E R I N G

An In ternat ional J o u r n a l
Volume 4, No. 1 (1997)

KLUWER ACADEMIC PUBLISHERS
Boston / Dordrecht / London

www.manaraa.com

AUTOMATED
SOFTWARE

ENGINEERING

An International Journal

Volume 4, N o . 1, January 1997

Special Issue: Knowledge-Based Software Engineering
Guest Editors: Dorothy Setliffand Howard Reubenstein

Introduction Howard Reubenstein and Dorothy Setliff 5

Searching for a Global Search Algorithm
.Sabine Dick and Thomas Santen 7

Specification and Animation of a Bank Transfer Using
KIDSA^DM YvesLedru 33

Interactive Explanation of Software Systems
JV. Lewis Johnson and Ali Erdem 53

Test Case Generation as an AI Planning Problem
Adele Howe and Richard Mraz 77

Desert Island Column Wladyslaw Turski 107

www.manaraa.com

Distributors for North America:
Kluwer Academic Publishers
101 Philip Drive
Assinippi Park
Norwell, Massachusetts 02061 USA

Distributors for all other countries:
Kluwer Academic Publishers Group
Distribution Centre
Post Office Box 322
3300 AH Dordrecht, THE NETHERLANDS

Library of Congress Cataloging-in-Publication Data

A C L P . Catalogue record for this book is available
from the Library of Congress.

Copyr ight © 1997 by Kluwer Academic Publishers

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system or transmitted in any form or by any means, mechanical, photo­
copying, recording, or otherwise, without the prior written permission of the
publisher, Kluwer Academic Publishers, 101 Philip Drive, Assinippi Park, Norwell,
Massachusetts 02061

Printed on acid-free paper.

Printed in the United States of America

www.manaraa.com

Automated Software Engineering, 4, 5 (1997)
© 1997 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Introduction
This special issue of the Journal of Automated Software Engineering contains four ex­
tended papers from the 10th Knowledge-Based Software Engineering Conference. The
Knowledge-Based Software Engineering Conference provides a forum for researchers and
practitioners to discuss applications of automated reasoning, knowledge representation and
artificial intelligence techniques to software engineering problems. This conference focuses
on specific knowledge-based techniques for constructing, representing, reasoning with, and
understanding software artifacts and processes. These techniques may be fully automatic,
may support, or cooperate with humans.

Paper session topics include Synthesis, Formal Methods, Knowledge-Based Environ­
ments, Process, Reuse/Reengineering, and Program Understanding. The conference was
held in November 1995 at the Boston Back Bay Hilton. Despite the U.S. Government
shutdown on the last day of the conference (necessitating the departure of some attendees),
the conference provided an excellent snapshot of the KBSE field.

The papers in this issue represent the best paper award winners and those identified as
strong candidates for best paper. The papers by Dick and Santen and by Ledru report on
the application of the Kestrel Institute's KIDS system and software synthesis approach by
independent research groups. The application and transfer of the powerful KIDS technol­
ogy bodes well for the ultimate transfer of KBSE technology into more active use. The
paper by Johnson and Erdem also reports on an integration and transfer of technology
this time in the form of a software understanding system based on Reasoning Systems'
Refinery^^ tools with presentation delivered over the World Wide Web. The paper by
Howe, Mayrhauser, and Mraz reports on the application of the University of Washington
UCPOP planner to generating software test cases using a robot tape library controller as an
example problem domain. A final paper, titled "META-AMPHION: Synthesis of Efficient
Domain-Specific Program Synthesis Systems" by Michael Lowry and Jeffrey van Baalen
describes improvements on the Amphion composition system. This paper was originally
submitted and accepted for publication in this special issue, but due to time constraints and
page budgets, it will appear in the next issue.

We would like to take this final opportunity to thank everyone who helped make
KBSE-10 a success. We hope you enjoy this opportunity to revisit these popular
topics in more detail. Information on the Knowledge-Based Software Engineering
conferences (either past, present, or future) can be found on the World Wide Web at
http://sigart.acm.org/Conferences/kbse.

Howard Reubenstein, hbr@concept5.com
General Chair, Concept Five Technologies

Dorothy Setliff, sediff@ee.pitt.edu
Program Chair, University of Pittsburgh

www.manaraa.com

Automated Software Engineering 4, 7-31 (1997)
© 1997 Kluwer Academic Publishers. Manufactured in The Netherlands.

Searching for a Global Search Algorithm
SABINE DICK sab@informatik.uni-bremen.de
Universitdt Bremen, FB3, Informatik, Bibliothekstrafiet, D-28359 Bremen, Germany

THOMAS SANTEN santen@first.gmd.de
German National Research Center for Information Technology (GMD FIRST), Rudower Chaussee 5, D-I2489
Berlin, Germany

Abstract. We report on a case study to assess the use of an advanced knowledge-based software design technique
with programmers who have not participated in the technique's development. We use the KIDS approach to
algorithm design to construct two global search algorithms that route baggage through a transportation net.
Construction of the second algorithm involves extending the KIDS knowledge base. Experience with the case
study leads us to integrate the approach with the spiral and prototyping models of software engineering, and to
discuss ways to deal with incomplete design knowledge.

Keywords: formal methods, KIDS, program synthesis, scheduling

1. Introduction

Advanced techniques to support software construction will only be widely accepted by
practitioners if they can be successfully used by software engineers who were not involved
in their development and did not receive on-site training by their inventors. Experience has
to be gained how knowledge-based methods can be integrated into the practical software
engineering process.

We report on experience with the application of the approach to algorithm design under­
lying the Kestrel Interactive Development System (KIDS) (Smith, 1990) to the construction
of control software for a simplified baggage transportation system at an airport. In this pa­
per, we use the term KIDS approach to denote the concepts that have been implemented in
the system KIDS. We did not use the implemented system KIDS in the case study, because
we wanted to assess the approach rather than the system. In this way, we could exactly
observe how concepts of the approach were used in the case study, and could modify the
approach where necessary.

The KIDS system has been applied to a number of case studies at Kestrel Institute. In
particular, it has been used in the design of a transportation scheduling algorithm with
impressive performance (Smith and Parra, 1993; Smith et al., 1995). We wished to find
out if we were able to use this method based on the available publications and produce
satisfactory results with reasonable effort. A second goal of this work has been to study
how a knowledge-based approach can be integrated into the overall software engineering
process. As a case study we chose a non-trivial abstraction of a practically relevant problem
to make our experience transferable to realistic applications.

www.manaraa.com

8 DICK AND SANTEN

In the following, we elaborate on two issues: a process model we found useful to sup­
port application of the KIDS approach, and the merits and shortcomings of the approach
we encountered when we explored alternative solutions to the transportation scheduling
problem.

We have integrated the spiral and prototyping models of software engineering (Boehm,
1988) with the KIDS approach. We developed the first formal specification and a prototype
implementation in parallel. The prototype served to validate the specification and to improve
understanding of the problem domain.

In the KIDS approach, global search algorithms are constructed by specializing global
search theories that abstractly describe the shape of the search tree set up by the algorithm.
For the case study, we wished to explore two alternative search ideas. WTiile we found a
theory suitable for the first one in the literature; the second one could not be realized with
the documented design knowledge. This led us to develop a new global search theory that
needs a slightly modified specialization procedure.

In Section 2, we introduce the baggage transportation problem. Section 3 provides a
brief review of the global search theory and the KIDS approach. We present its integration
into a process model in Section 4. The design of two transportation schedulers is described
in Section 5. Optimizations are sketched in Section 6, where we also discuss the resulting
algorithms. Related work is described in Section 7, and we summarize our experience with
the approach in Section 8.

2. Baggage transportation scheduling

We wish to develop a controller for the baggage transportation system at an airport. Baggage
is transported from check-in counters to gates, from gates to other gates, or from gates to
baggage delivery points. Each bag should arrive at its destination in due time.

To simplify the problem, we do not consider on-line scheduling of a continuous flow of
baggage fed into the system at the check-in counters, but schedule all baggage checked-in
at a particular point in time.

2.1. Domain model

We model the transportation net as a directed graph as shown in figure 1. Check-in counters
and baggage delivery counters, gates and switches are represented by nodes. We classify
these in three kinds: input nodes, transportation nodes and output nodes. Check-in counters
correspond to input nodes, switches to transportation nodes and baggage delivery counters
to output nodes. Since gates serve to load and unload airplanes, we represent them by an
input and an output node.

The edges of the graph model conveyor belts. The capacity of a belt is the maximum
amount of baggage, the "total weight", that it can carry at a time. Its duration is the time it
takes to carry baggage from the start to the end node.

Bags are described by their weight, source and destination nodes, and their due time.
Source and destination are input and output nodes, respectively. Weight and due time are

www.manaraa.com

GLOBAL SEARCH ALGORITHM

fiteOI gmtOl

Figure I. Transportation network.

• • I * OS •Mc G4

positive natural numbers. Due times are specified relative to the beginning of the transporta­
tion process.

2.2. Problem specification

We basically use the specification language of (Smith, 1990) which is sorted first order
predicate logic. For notational convenience, we use simple polymorphism and higher-
order functions in some places, and we also assume predefined sorts for standard data
types such as the natural numbers, sets, and lists. Free variables in formulas are implicitly
universally quantified and we leave out type information if it is clear from the context.

Our task is to assign, to each bag, a route through the network leading from its source to its
destination node in due time. To keep things simple, we require an acyclic network without
depots at the transportation nodes. Thus, the only way to resolve scheduling conflicts that
arise if capacities of conveyor belts are exceeded is to delay baggage at source nodes. A
route therefore is a pair of a delay and a path through the network. We model paths by
sequences of vertices. Apian maps baggage to routes. We introduce abbreviations for these
sorts, where map(A, B) is the sort of all finite mappings from A to B.

path = seq(vertex)
route = nat x path
plan = map(baggage, route)

www.manaraa.com

10 DICK AND SANTEN

Attempting to find a plan for a particular set of bags makes sense only if there exists a
feasible path for each bag. This is a path p through the network g leading from the source
node to the destination node of a bag b, i.e. the first vertex of p is the source node sourceib)
of b and the last vertex of p is equal to the destination node dest(b) of b. Furthermore, the
capacities of all conveyor belts on the path must be at least as big as the weight of the bag
b. This is expressed by the predicatepath-can-carry(g, p, b). A bag for which no feasible
path exists cannot be scheduled through the transportation net. The notion of feasibility is
formalized by the following equivalence.

feasible-path{g, b, p) <==>•
is^?ath{g, p) A source{b) — first(p) (1)
A dest(b) = last(p) A path-can-carry(g, p, b)

Feasibility considers only single paths of a plan. Two additional restrictions refer to
the interaction of routes in a plan. First, a plan is acceptable only if the total weight of the
bags on any belt at any time does not exceed the belt's capacity, which is expressed by the
predicate capacity Jbounded{g, p). Second, we are only interested in complete plans that
schedule all baggage. Thus we require the domain of a plan to consist of the entire set of
bags bs that must be scheduled, bs = dom{p).

An ideal solution is a plan with feasible paths where all bags arrive at their destination
nodes in time and it is not necessary to delay any bags at their source nodes. Although
an ideal plan does not exist in general, we must find some plan as long as feasible paths
exist for all bags to schedule. Thus, we have to find an optimality criterion to select a most
appropriate plan with feasible paths.

For our problem, punctuality is most important, while it is desirable to minimize delays
of bags at source nodes and thereby reduce storage space needed at the input counters. We
consider punctuality and delays only in a qualitative way, and define a cost function based
on the criteria if all bags are delivered in time and if baggage is delayed at input nodes.

cost

0

1

2

3

all bags in time

yes

yes

no

no

no delays

yes

no

yes

no

Imagine we have a suitcase b\ at check-in counter C\ and another one b2 at gate G 4 in
figure 1. Both have weight 1. They are checked in for the same flight, leaving from gate G2.
Let the transportation time of each belt be one time unit and its capacity also be one unit. A
valid transportation plan maps by and b2 to undelayed routes, where the paths through the
net are described by sequences of nodes.

/&, ^ (0, <Clt TUT2, T6, T5, G2})\
P \b2 ^ (0, (G4, T6, T5, G 2 » /

www.manaraa.com

GLOBAL SEARCH ALGORITHM 11

F u n c t i o n transport.plan{bs : set{baggage), g : graph)

w h e r e acyclic{g) A V6 € bs. 3p. feasible-path{g, b,p)

r e t u r n s (p : plan \ min{cosi,p, {q \ bs = dom{g) A capacityJ)Ounded{g, q)

A Vi € dom{q). feasible.path{g,b,snd{q{b)))}))

Figure 2. Problem specification.

Now suppose suitcase bi shall be transported from C4 to G2. As we have to avoid
exceeding the capacity of the belt leading to G2, one possible solution is to delay bi by one
time unit. This gives us the transportation plan:

A i h> (1 , (C4, n, T5, G 2 » \
yb2 ^ (0, {G4, n, 75, Gz)))

With the predicates defined so far, we can set up the problem specification as shown in
figure 2. We wish to synthesize a function called transport-plan with two input parameters,
a set of baggage bs and a graph g. The where-clause describes the precondition of the
function: we may assume that g is acyclic and that there is a feasible path in g for all bags
in bs. The returns-clause describes the postcondition for the result of transport-plan. The
predicate min(f, x, s) is true if x is a member of the set s such that f(x) is a minimum
of the image of s under / . Thus, transport-plan has to select a plan p with minimal cost
from the set of all plans q that are complete, do not put more load on belts than allowed,
and where the path assigned to each bag b is feasible. This path is the second component
snd{q{b)) of the route assigned to b under plan q.

3. Design of global search algorithms

The basic idea of algorithm design in the KIDS approach is to represent design knowledge
in design theories. Such a theory is a logical characterization of problems that can be solved
by an algorithmic paradigm like "divide and conquer" or "global search". Algorithm design
consists of showing that a given problem is an instance of a design theory. In the following,
we summarize how global search algorithms are developed in the KIDS approach. For a
full account, we refer the reader to (Smith and Lowry 1989; Smith, 1987; Smith, 1990).

Note that the theory of global search algorithms has been developed at Kestrel for nearly
a decade. Our work is based on information drawn from several publications which reflect
different stages of the theory's development. The account of global search presented in this
paper therefore is not a verbatim citation but we have made several minor changes.

3.1. Design theory

The logical frameworks used in the KIDS approach are algebraic specifications or theories,
and mappings between them. Theories consist of a signature and a list of axioms over the
signature. The signature declares sorts and functions with their sorts. The axioms describe
properties of the functions introduced in the signature. A signature morphism maps the

www.manaraa.com

12 DICK AND SANTEN

sort and function symbols of one specification to expressions over the sorts and functions
of another specification such that the sorts of the target expressions are consistent with
the sorts of the source symbols. A signature morphism is called a theory morphism if the
images of the axioms of the source theory are theorems in the target theory, i.e. they are
logically entailed by the axioms of the target theory.

The class of problems we deal with is to synthesize a function that is correct with respect
to a specification of its input/output behavior. A quadruple V — {D, R, I, O) is called a
problem specification if the following conditions hold. The sorts D and R describe the input
domain and the output range of the function. The predicate / : D —>• Bool describes the
admissible inputs and O : D x R -> Bool describes the input/output behavior. A function
/ : D -> R is a solution to a problem V if

Vx : D.I(x) => 0(x, f{x)) (2)

The problem specification of the transportation problem is described by the following
signature morphism:

/ i->- transport-plan
D h-> set(baggage) x graph
R i->- plan
I H* X{bs, g). acyclic(g) AVfee bs. 3p. feasible-path(g, b, p) (3)

O i-> k{bs, g), p. minicost, p,
{q | bs = dom{q) A capacity Jbounded{g, q)
A V& e dom(q). feasible-path(g, b, snd(q(b)))})

There is an obvious translation from figure 2 to this morphism. The cartesian product
of the input parameters' sorts becomes the input domain D while R becomes the sort of
the result in the returns-clause. The predicate of this clause is transformed into a function
from D x R to Bool by A-abstraction over the pair of input parameters and the result.

The synthesis problem is solved if we find an expression for transport-plan such that the
translation of formula (2) is a theorem under the theory of baggage and graphs.

A design theory extends a problem specification by additional functions. It states prop­
erties of these functions sufficient to provide a schematic algorithm that correctly solves
the problem.

The basic idea of "global search" is to split search spaces containing candidate solutions
into "smaller" ones until solutions are directly extractable. In this way, a global search
algorithm constructs a search tree in which nodes represent search spaces and the children
of a node are representations of its subspaces. Solutions may be extractable from each node
of the tree, and the set of all solutions extractable from nodes of the tree is the set of all
solutions to the search problem.

Let us consider an example. We wish to find a total mapping from the set U = {a, b} to
the set V = {c, d) that fulfills some predicate O and is optimal with respect to some cost
function c. Global search can be used to solve this problem as is illustrated in figure 3. The
idea is to generate all total mappings from U to V, collect the ones that fulfill O and find
one of these that has minimal cost.

www.manaraa.com

GLOBAL SEARCH ALGORITHM 13

<{aj.{b).{lah- cl)> <W.(b},{laK dl)>

Split Split/ \SplH

<{a,b),{},(l«h- c, b I— cl)>

ExtfKt

{laj—c.bh-cl) :

O? Î

<{a.b}.O.il«K<l,bH-dl)>

Extract

{laKd,bh-dlJ

07 }
{

min(c)) I—U (I... I)

Figure 3. Global search for finite mappings.

Search spaces can be described by triples {S, T, M) where 5 and T partition U and M
is a mapping from 5 to V. The set T contains the elements of U to which nothing has yet
been assigned. In order to find all mappings from UioV, the initial search space which
becomes the root of the search tree must be ({}, U, {]), where {J is the empty mapping. The
initial search space is constructed from the input by the function ff,. Search is performed
by splitting search spaces as long as T is not empty. The predicate Split relates a search
space to its direct subspaces. They are obtained by picking arbitrary elements of T and V,
and extending M by the corresponding maplet. The predicate Extract relates a search space
descriptor to all solutions that are directly extractable irom it. In our example, only the
leaves of the search tree contain directly extractable solutions, namely the total mappings M.
So far, we have only generated all mappings from f/ to V but not checked if they fulfill O.
This is done after extracting solutions, and finally we pick one of these that is minimal with
respect to the cost function c. The search tree of figure 3 shows the search idea for our
example, and a global search theory for finite mappings which we present in Section 5.1
formalizes this idea.

For a concrete problem where O and c are known, there are many possibihties for
optimization. It may be possible to prune branches of the search tree if they cannot contain
feasible solutions, and the search can be terminated if we can decide on the optimality of a
solution without inspecting all of them.

In the rest of this section, we describe an abstract global search theory that captures the
essence of all (optimizing) global search algorithms. Every concrete search idea, such as
the one discussed above, can then be formalized as a specialization of the abstract theory
via a theory morphism. Two such specializations are used in Section 5.

www.manaraa.com

14 DICK AND SANTEN

Sorts D,R,R,C
Operations

I -.D^ Bool
0 : D X R-^ Bool
1 : Dx R^ Bool
fo-.D-^R
Satisfies : R x R ^ Bool
Split: D X R xR^ Bool
Extract: R x R -^ Bool
c:R-^C
<:CxC-^ Bool

Axioms
GSO. I(x)=^ I(x,ro(x))
GS1. I(x)A I(x, f) A Split{x, r, s) = » i{x, s)
GS2. I{x) A 0(x, z) ==» Satisfiesiz, fo{x))
GS3. I{x)Aiix,r)=^
Satisfiesiz, f) = (3*. Split*(x, f, s) A Extract(z, s))
GSC. < is total ordering on C

Figure 4. Abstract global search theory.

The abstract global search theory is shown in figure 4. It is an extension of the problem
specification (D, R, I, O). The new sort R is the type of search space descriptors. The
predicate / characterizes legal search space descriptors. In the example above, / contains
the condition that S and T form a partition of U. For an input x: D, ro(x) is the initial
search space. Axiom GSO ensures that the initial search space is legal.

The descendent relation on legal search spaces is given by Split. Split(x, r, s) is true if
i' is a (direct) subspace off for an input J:. By axiom GSI, all children of a legal subspace
are again legal. The solutions that are obtainable from a single node f of the search tree are
described by Extract{z, f).

By axiom GS3, Satisfies{z, r) describes the solutions z contained in a search space f that
can be found with finite effort. We assume that x is a valid input, I{x), and f is a legal
descriptor for x I(x, r). Then Satisfies(z, r) means that there exists a search space s from
which we can extract z and that is connected to f by a finite path in the search tree. The
latter condition is expressed by Split* which is defined in the following way.

Split*(x, f, s) = (3k:nat. Spli^{x, r, s))

Split^ix, r,s) = (r = s)

Split'^'^^ix, r, s) = (St. Split(x, f,t) A Split^ix, i, s))

Since we wish to find a globally optimal solution, GS2 requires that all feasible solutions
z for a valid input x are contained in the initial search space hix)-

Finally, the sort C is the range of the cost function c. By axiom GSC, it is totally ordered
with respect to the ordering relation <. Thus, it makes sense to define an optimal solution
z as one with minimal cost c{z).

www.manaraa.com

GLOBAL SEARCH ALGORITHM 15

Function F{x : D)
where lix)
returns {z:R \ min{c, z, {z' I 0{x, z'))))
= f.gs(x,fo(x))

Function f-gs(x : D,f:R)
where I{x) A I(x, r) A<^(x,r}
returns (z: R\ min{c, z, {z' | Satisfies(z', f) A 0{x, z')}))
= some {z:R\ min(c, z, [z' \ Extract(z, r) A 0(x, z')}

U{f.gs{x, s) I Split(x, r, S) A $(x, s)]))

Figure 5. Global search algorithm schema.

Based on the theory of figure 4, we can provide a schematic algorithm F that computes, for
an input x with / (x), a minimum cost solution z for which 0(x,z) holds. This algorithm is
shown in figure 5. The function f-gs implements the actual search and is called by F with the
initial search space ro(x). It returns some z with minimal cost that is either directly extracted
from the parameter search space r, i.e. it is an element of {z' | Extract{z, f) AO{X, Z')), or
that is obtained by sphtting r and recursively applying f^gs to its subspaces s.

In addition to the elements of the abstract global search theory, this algorithm uses a
necessary filter <I> to prune branches of the search tree. Necessary filters are defined by the
implication

/(;c) A i{x, f) A {3z : R. Satisfies{z, f) A 0{x, z)) => <^{x, f) (4)

This means 'd<b{x,r) does not hold then there are no feasible solutions in f and we need
not search this space.

Note that the theory of figure 4 does not guarantee termination of F. Infinite chains of split
operations are possible as well as infinitely many subspaces of a search space. Furthermore,
totality of F on valid inputs is not ensured because the global search theory does not require
feasible solutions to exist for all valid inputs, i.e. it does not entail

Vx : D. I(x) =>3z:R. Oix, z)

3.2. A Igorithm design

How can we find a global search algorithm for a given problem specification? We have to
find a search space description R and operations r^. Satisfies, Split, and Extract such that
the global search axioms are fulfilled.

In the KIDS approach this is done by referring to knowledge about search strategies on
concrete data structures that is formalized in a library of general global search theories.
We used Appendix A of (Smith, 1987) in our case study. Examples are theories to enu­
merate all sequences over a finite set and to enumerate all mappings between finite sets.
A global search theory for a given problem is constructed by specializing a theory from

www.manaraa.com

16 DICK AND SANTEN

Uy) '
(c)

(b)

z=uy)

y=t(x)

yx)
(a)

z=W

OA(x,y)

(d)

V

Cb(x,y)

Figure 6. Specialization.

the library. A problem theory A — {D/^,RA,IA,OA) specializes to a problem theory
B={DE,RBjB.OB)\f

RB^RA

AVx-.Dg.Sy.DA-^z-.RB-
(is(x) = ^ iA(y))
A dsix) A Ofi(x, z) = > (9A(y, z)) (5)

Condition (5) basically says that every solution z for 5 is also a solution for ^ . Thus, if we
know how to construct solutions for A and we can easily decide if a solution for A also is
a solution for B, then we have found a way to construct solutions for B. Figure 6 further
illustrates this idea. We want to construct an algorithm fe for this problem, i.e. we want to
implement transition (a) at the bottom of figure 6. Suppose that we know a solution f^ for
A which implements transition (c). If ^ specializes to B then we know that we can find an
input y of /A for every input x of B. Application of /A gives us an ^-solution z (c). The
final step (d) is to test if z fulfills OB- In this way, the problem of finding an algorithm for
B reduces to finding corresponding inputs in step (b) and deciding if Og holds in step (d).

Verifying (5) and finding the mapping t from ;B-inputs to ^-inputs can be done hand in
hand if we construct a witness for the existential quantification over y while proving (5).
This witness, in general, is a term depending on x which can be interpreted as a function
from Dg to DA-

Global search theories are extensions of problem theories. If we find a global search
theory in our library whose problem theory specializes to the problem B at hand, we can
extend -B to a global search theory using PQ, Satisfies, etc. of the library theory where we
substitute the witness t(x) for the input parameters. How this exactly works is shown in
Section 5.

In general, the algorithm obtained by instantiating the schema of figure 5 is very ineffi­
cient. But it has a high potential for optimization which can be exploited by deriving a choice
of filters, by program transformation, and by data structure refinement. The optimizations
we have applied in the case study are discussed in Section 6.

www.manaraa.com

GLOBAL SEARCH ALGORITHM 17

4. A process model

Our presentation of the application domain theory and problem specification in Section 2
only describes the final result of the specification effort. To develop the domain theory is one
of the major tasks if not the most complex and time consuming one in the KIDS approach.
Much of its complexity stems from two requirements we demand of the domain theory: it
must not only make precise the informal—usually incomplete and sometimes inconsistent—
ideas about the nature and context of the problem, but it must also be formulated so as to
aid and not impede the subsequent design process. The KIDS approach does not provide
direct help to construct domain theories. In contrast, it needs a formal domain theory to
work on and can smoothly be applied only if the presentation of this theory has a suitable
syntactic form.

As a consequence, it is very unlikely that a satisfactory domain theory can be built
from scratch. This observation led us to integrate the KIDS approach with the prototyping
and spiral models of software engineering (Boehm, 1988). One cycle of development, as
sketched in figure 7, has three phases. The first is concerned with establishing or enhancing
the domain theory, the second produces code, and in the third phase code and theory are
tested and validated.

We found it useful to build the first draft of the domain theory in parallel with a prototype.
In this early phase, shaded gray in figure 7, the domain theory is not rich enough to apply
algorithm design knowledge from design theories. Building a prototype enables us to get

validation / test domain theory

code

Figure 7. Process model.

www.manaraa.com

18 DICK AND S ANTEN

a deeper understanding of the problem and the essential properties of the application area.
It helps us to build a complete domain theory and to avoid dead-end developments.

The way in which the domain model is expressed, the data structures used, and the
properties stated, can have much influence on the ease with which algorithm design can be
carried out. Thus, what seems to be one cycle of design in figure 7, may in practice require
several rounds of refining the domain theory until the formalized notions smoothly fit with
the design theory we wish to use. This situation seems to be typical for constructive for­
mal methods like program synthesis and transformation or interactive mechanical theorem
proving. The more we wish to systematically construct solutions and provide tool support
for this process, the more important becomes the syntactic presentation of our problems.

One example from the baggage transportation case study is the way we modeled delays
in routes (cf. Section 2.2). In an early version of the domain theory, we described them by
repetitions of the input nodes in paths, each occurrence of the input node denoting a delay
of one time unit. This forced us to introduce predicates to characterize legal routes, and
we could not use an acyclic graph model. When we decided to reformulate the theory and
make delays explicit the theory became much more elegant and further design was much
easier.

The process of theory refinement perpetuates as we derive filters and optimize code.
The validation and test phases also serve us to validate the code with respect to properties,
that are not captured by the design knowledge put to our disposal in the KIDS approach.
Examples for such properties are the adequacy of domain theories and the efficiency of the
synthesized code.

5. Two ways to find transportation plans

Looking at the sort of transportation plans,

map(baggage, nat x seq(yertex))

suggests two strategies to search for solutions to our scheduling problem.

1. Domain extension. Start with the initially empty map and successively extend it by
assigning possibly delayed feasible paths to baggage.

2. Image modification. Start with the map that assigns their source nodes and no delay to
all baggage; successively modify the assigned routes by extending paths or increasing
delays.

Both strategies enumerate all feasible transportation plans. In the KIDS approach, search
strategies are provided in a library of general global search theories. Algorithm design
proceeds by specializing one of these to the problem at hand. The first condition in (5),
RB £ RA^ suggests matching the output domains of the problem specification with the ones
of the library theories to find candidates to specialize.

When we began algorithm design for the transportation problem, our initial idea was to
use die image modification strategy, but there is no general global search theory documented

www.manaraa.com

GLOBAL SEARCH ALGORITHM 19

in the KIDS library (Smith, 1987) that models image modification. Instead, we found a
theory that describes domain extension. This motivated us to explore both approaches.

5.1. Domain extension

Searching Appendix A of (Smith, 1987), we found a global search theory that specializes
to the transportation problem. The theory gs-finite jnappings. It is a generalization of the
search strategy to enumerate finite mappings shown in figure 3 to arbitrary finite sets U
and V. We present this theory by a theory morphism, mapping the signature of the abstract
global search theory of figure 4 to concrete expressions.

F i-> gs-finite-mappings

D h^ set{a) X set{P)

R h^ map(a, ^)

I i-» k(U, V). |C/| < oo A I V| < oo

O i-^ HU, V), N.N e MapiU, V)

R h-̂ set(a) X set(a) x map(a, P)

I h> k{U, V), {S,T,M).S^T = U AM e Map(S, V)

Satisfies h^ XN, {S, T, M).(Vx e 5.A^(x) = M(x))

ro^X{U,V}.({},U,{\)

Split h^ MU, V), {S, T, M), {S', r , M'}.

(3a,b.a = arbiT)Ab€ V

A <5", r , M') = {S + a,T -a,M®\a\-> b\))

Extract \-^ XN, {S,T, M). T = {} A N ^ M

The first part of the morphism determines the problem theory. The input domain D is
a pair of sets over arbitrary types a and ^. The input condition / restricts the valid inputs
U: set(a) and V: set(fi) to finite sets. The output range R consists of all finite mappings
from a to ^. Feasible outputs are characterized by the output condition O: the resulting
mapping N must have domain U and range V. Formally the function Map is defined by

M e MapiU, V) <=> dom(M) = U AVb e dom(M). M(b)eV (6)

Note the difference between the sort map{a, fi) and the term Map(U, V): the latter denotes
the set of all total mappings from U to V, and each of them has the sort map(a, fi).

The rest of the morphism extends the problem theory to a global search theory. Search
spaces R are denoted by triples where the first two components are sets over a and the last
is a mapping from a to fi. By / , a particular search space is valid for inputs U and V only
if 5 and T partition U, i.e. 5 W T = f/, and M is a total mapping from 5 to y .

When is a solution N contained in a (valid) search space {S, T, M), i.e. when does
Satisfies{N, {S, T, M)) hold? According to the idea of domain extension, M as it is

www.manaraa.com

20 DICK AND SANTEN

determined so far must be compatible with N. This is true if the images of Â and M
are identical on S, which is the domain of M.

As discussed in Section 3.1, we get a direct subspace of (5, T, M) if we extend the domain
of M by exactly one element. This means we determine an arbitrary element a — arb(T)
of T and some value b of V, and extend M by mapping atob, M ®{a t-^ b). To obtain a
valid search space, we move a from T into S. Finally, if T is empty we have found a total
mapping from UtoV which we can extract.

In order to use gsjinitejnappings to construct an algorithm for the transportation prob­
lem, we have to show that its problem specification specializes to (3). The first step (cf. the
specialization condition (5)) is to ensure that the range sort of the transportation problem
is a subsort of the range sort of gs^nitejnappings. Unifying the two sort expressions, we
find substitutions for the type variables in gs-finitejnappings.

a i-> baggage

p i-> route

With this substitution, we get an instance of gs-finite.mappings whose output domain is
equal to the one of transport-plan. It remains to find expressions in g and bs for U and V
so that we can prove the specialization condition relating the two theories.

'^{g,bs).3{U,V).'iM.
(acyclic(g) AVb e bs.Sp. feasible ̂ ath{g, b, p) = ^ jC/| < oo A |F | < oo)
A (acyclic(g) AVb € bs. Sp. feasible 4>ath(g, b, p) ,_,

A VZ? € dom{M). feasible.pathig, b, snd{M{b))) '
Abs = dom(M) A capacity J>ounded(g, M)
=^M e Map(U, V))

The last implication gives the clue to find expressions for U and V. If we compare
the definition of Map with the premise of the implication, we find two matching con-
juncts. First, dom{M) = U matches bs = dom(M) if we substitute bs for U. Second,
VZ> e dom(M). M(b) e V and Vb € dom(M). feasible-path{g, b, snd(M(b))) are similar.
Regarding predicates as propositions of membership of their extensions

P(x) ^=^ X e {>-1 P(y)}

suggests to use the set of all feasible paths as a substitution for V. Unfortunately,
feasible-path depends on a particular bag b, while V must contain candidate routes for
all members of bs. Analyzing the situation might suggest to use

{(«, p)\3b e bs. feasible4)ath{g, b, p)}

as a substitution for V because quantification is the only way to "hide" b in the expression
for V. Only to consider paths that are feasible for all bags of bs is certainly not useful—this
set typically is empty because there are bags with different sources or destinations. This
analysis appears rather complex and there is a much simpler way to come to a substitution for

www.manaraa.com

GLOBAL SEARCH ALGORITHM 21

V: expanding the definition (1) of feasible ^ath, we find that only the conjunct is^ath(g, p)
does not depend on b. The remaining conditions for feasible paths are naturally exploited
by developing a necessary filter, as we show at the end of the section.

Still, just to take the set of all paths in g is not restrictive enough to make V a finite set
because it does not restrict the delay n of the routes in V. We therefore introduce an upper
bound md{g, bs) on delays, and define the set of all routes through g with a delay less than
or equal to md(g, bs) by

routes{g, bs) = {{n, p) \ is-path{g, p) An < md(g,bs)}

With this definition, we finally come to use the sets

U h^ bs

V (-> routesig, bs)

to specialize gs-finitejnappings.
Since there are feasible paths for all bags in bs (cf. the precondition of transport^plan

in (3)), we can assign to md (g, bs) the sum of the times needed to traverse a feasible path
for each bag. Applying the substitution fora, ^,U and V to gsjinitejnappings gives us a
global search theory for transport^lan.

R i-> set(baggage) x set(baggage) x plan

I ^^ k{g, bs), {S, T, M). S\i)T ^bs

A M e Map(bs, routes(g, bs))

Satisfies i-> kN, {S, T, M).yb e S. N(b) = M(b))

ro^X{g,bs).{{},bs,{\)

Split t-> X{g, bs), {S, T, M), {S', T', M').

{lb, r.b = arb{T)

Are routes(g, bs)

A {S', r , M') = {S + b,T -b,M®{b\-> r\})

Extract ^ XN, {S,T, M). T = [} A N ^ M

Note that "substituting" for U and V, which are bound variables, here means to apply the
components of gs-finite-mappings to the pair of values for U and V and then abstracting
over the input parameters of transport^lan.

Also note that the global search theory for transport-plan contains the problem (3) rather
than the problem specification of gs^niteanappings. In this way, the more restrictive pre-
and postconditions are incorporated into the search algorithm when we instantiate the
schema of figures.

The resulting search strategy assigns complete routes to one bag after the other. Without
further optimization. Split assigns arbitrary routes to bags, and only when a complete plan
can be extracted it is tested whether the assigned routes are feasible. An obvious way to
prevent infeasible assignments in the first place is to develop a necessary filter. Actuatization

www.manaraa.com

22 DICK AND SANTEN

of (4), and the fact that capacity Jbounded is monotonic in domain extensions of M gives us

^^X{g,bs),{S,T,M).
(Vb e S. source (b) = fst(snd(M (b)))
A dest (b) = last(snd{M (b)))
A path-catijcarryig, p, snd(M(b))))
A capacityJbounded{g, M)

Here, we have found an easy way to incorporate the remaining conjuncts oifeasible.path
into the algorithm.

5.2. Image modification

There is no global search theory documented in (Pressburger et al., 1991; Smith, 1987;
Smith, 1990) that supports searching for maps by image modification. So we developed a
new theory for this purpose.'

Abstracting from the concrete scheduling problem, the image modification strategy can
be sketched as follows: The images of a given map (the initial schedule) are increased along
the various degrees of freedom that are given by the range type of the map. A suitable
successor relation on the elements of the range type can be used to describe the "direction"
in which to increase the images of the map. This idea is formalized in gsparallel-mappings.

F h-> gs-paralleljnappings
D h^ map(a, P) x set{p x /3)
R H> map(a, /S)
/ H> X{M, S).

\dom{M)\ < oo A'^x.-'(x Sx)
A(Vx,y.xSy ==*• -^(3z. x S z A z S y))

O \^X{M,S),N.
dom(M) = dom(N) A
Vx e dom(M). Mix) S*N(x)

R i-> map(a, fi) x set{fi x fi)
/i-> A.(M, S},(M', 5').

5 = 5" A dom{M) = dom(M')
A Vx 6 dom(M). Mix) S*M'ix)

Satisfies Y-^ XN, {M, 5). (Vx e domiM). Mix) 5*A (̂x))
fo Ĥ X{M, S). {M, S)

Split i-> X{M, S), {M', S'), {M", S").
(3x, y.x = arbidomiM')) A M'ix) Sy
A {M", S") = (M' e\xi-^ y\, S))

Extract i-> AÂ , {M,S).N = M

www.manaraa.com

GLOBAL SEARCH ALGORITHM 23

The inputs are a map M and a binary relation S on the range of M. We model the relation
by a set of pairs. The input condition / requires that the domain of M is finite and that S is
irreflexive and non-dense. We use x Sy as a. notation for {x,y) e S to increase readability.
Non-density means that there is no z "between" any two values x and y with x S y. This
is necessary to ensure that all solutions can be found by finitely many applications of Split.
Since we just want to modify the image of input M, a solution W is a mapping with the same
domain as M. Furthermore, each image A (̂x) is reachable from the corresponding input im­
age M(x) by S, i.e. the pair {M(x), N(x)) lies in the reflexive and transitive closure 5* of 5.

Search spaces of R are pairs of maps and relations. The invariant / and the initial search
space r—which is the identity function—tell us that the relation is always the input relation
5. We must include S in search spaces because we have to refer to it in Satisfies: a solution
N is contained in a search space with mapping M if the images of Â are reachable from
M by 5*. The remainder of / is the output condition 0(M, M') for the maps in the search
spaces. This shows that—unlike with gs-finite jnappings—we can extract a solution from
every search space, namely its first component.

To split a search space (M', S'), we choose an arbitrary element x of the domain of M'
and a direct successor y of M'{x) under S. The new map M" is constructed by overriding
the image ofx under M' by y.

The theory gs-.parallel-mappings is a very abstract formalization of the idea searching
for a mapping by image modification. There are only few restrictions on the successor
relation S which determines the way search is actually performed. We could only put more
restrictions on S if we made assumptions on the particular structure of the range sort ^.
But the resulting theory would be more specialized than is necessary to capture the search
idea. This would restrict the range of problems to which it could be applied and is therefore
undesirable.

5.2.1. Data type driven specialization. Since we now have a theory that captures our
search idea, we proceed by specializing the theory to the transportation problem as we did
in Section 5.1. The instance of the specialization condition (5) reveals a drawback of the
generality of gs .parallel jnappings.

map(a, j6) c plan
A
'V{g,bs).3(M,S).>/N.

(acyclic(g) A Vfc e bs. 3p. feasible^ath (g, b, p)

{\dom{M)\ < oo A Vx. -'(jc 5;c)
A{'ix,y.xSy=^^{3z.xSzAzSy)))) (8)

A
(acyclic{g) A Vfc 6 bs. 3p. feasible-path (g, b, p)
A Wb e dom(N). feasible-path (g, b, snd(N(b)))
Abs = dom{N)
A capacity J>ounded(g, N)

= » dom(M) = dom(N)
A (Vx € dom(M). Mix) S* N(x)))

www.manaraa.com

24 DICK AND SANTTEN

This condition does not help much in systematically finding a substitution for M and 5.
Since gs^arallaljnappings does not make assumptions on the structure of p, comparing
the syntactic structure of the input/output conditions of the global search theory and the
transportation problem does not provide candidates for S and M.

At this point of the development, we could appeal to human intuition, invent substitutions
for 5 and M, and verify that they are witnesses for (8). But this would contradict the general
KIDS approach of systematically constructing unknowns wherever possible. Instead, we
propose to specialize gs-paralleljnappings in two steps. The first step determines a suitable
successor relation S while the second step finds a substitution for M.

To determine 5, we first analyze the condition map(a, /3) c plan to find substitutions for
the type variables a and /3. Unification of the two sorts yields

a Ĥ baggage

P h-> nat X seqivertex)

Now we can analyze the range type nat x seq{vertex) to find a successor relation on its
elements based the basic types it is composed of. We know the usual successor function
on natural numbers, and a canonical way to extend sequences is to append an element. In
analogy to lexicographical orderings on pairs, we construct a successor relation by extending
either element of a pair. Thus, we define S by

{«, p) S (m, q) <<=̂ {n + \=mAp = q)\/(n = mA (3i;. p {v) = q)) (9)

This definition fulfills the conditions on S in (8), namely irreflexivity and non-denseness.
For the reflexive and transitive closure of S we get

{n, p) S* {m, q)<=^(n<m)v (Sy. p ++y=q) (10)

With this definition for S* it remains to show

V{g,bs).3M.\'N.
(acyclic(g) AYb e bs. 3p. feasible ̂ ath{g, b, p) = > \dom{M)\ < oo)
A

(acyclicig) A VZ? e bs. 3p. feasible^ath{g, b, p)
AVb e dom(N). feasible4>athig, b, snd(N(b)))
Abs = dom(N)
A capacityJjounded{g, N)
==> dom(M) = dom(N)

A (Vx e dom(M). ifst(M(x)) <fst(N(x))
A(3q. snd{M{x)) q = snd(N(x))))))

As in Section 5.1, we can now easily determine a substitution for M. It assigns to each
b in bs the non-delayed path only consisting of the source node ofb.

M h^ ib i-^ (0, {sourceQ}))) \b ebs\

(11)

www.manaraa.com

GLOBAL SEARCH ALGORITHM 25

With this information, we can finally set up the image modification theory for the trans­
portation problem like we did in Section 5.1.

6. Optimization and results

The algorithms resulting from the instantiation of the schema in figure 5 are well structured
but very inefficient. Optimization of these algorithms is mandatory. Three classes of opti­
mizations suggest themselves: filter development, program transformations, and refinement
of data structures. The implemented system KIDS supports program transformations such
as finite differencing and case distinction. It also supports developing necessary filters. In
(Smith, 1987), various notions of filters for global search algorithms are formalized, and it
is suggested to implement search heuristics by using priority queues to store search space
descriptors.

Performing program transformations and data structure refinements on a formal basis
is very costly and nearly impossible without machine support. We therefore decided to
use the above optimization techniques as guidelines for our implementation but to build
the implementation in an "ad-hoc" way without using formal techniques. We chose the
functional programming language ML for the final implementation because functional
programming offers an easy way to express instances of the program schema of figures in
a programming language.

The strongest necessary filter which we have found for the algorithm of Section 5.1
is based on capacity-bounded: only partial plans which do not exceed the transportation
capacity of any belt can be extended to complete, feasible plans. A stronger filter deciding
if delaying a path can lead to a solution would be desirable, but without further assumptions
on the transportation net such a filter is not obvious.

When we split a search space the test on capacityJbounded for the extended plan need
only inspect the belts that are contained in the newly added route. This optimization can
be regarded as an application of the "case distinction" transformation.

For the algorithm of Section 5.2 the situation is more complicated: the predicate capacity-
bounded is not monotonic in increasing delays and can therefore not serve as a necessary
filter. According to the successor relation S defined in (9), Split increases delays by one
to generate direct subspaces. If capacity Jbounded does not hold for the generated plan
it may nevertheless hold for plans where the delay is increased by more than one unit.
Consequently, we optimize Split and generate plans with minimally increased delays such
that capacity-bounded holds.

Both algorithms need information that can be computed from the input once and for all,
e.g. the feasible paths for all bags depend only on the input transportation net and not on
search spaces. This information is precomputed before starting the search, which is an
example application of finite differencing.

As suggested in (Smith, 1987), we use a priority queue to store search spaces. Crucial for
efficiency is the choice of an ordering for the queue. The cost of the partial plans obviously
has highest priority, but the classes of plans with equal costs are large and a finer ordering
is needed. We have implemented the heuristic of searching "more complete" spaces first.
For the domain extension algorithm, plans with larger domains have priority, while for

www.manaraa.com

26 DICK AND SANTEN

Table I. Size of theories and programs.

Document Lines

Library of basic data structure specifications 490

Domain theory 240

Algorithm theory 350

ML implementation code 970

the image modification algorithm, we prefer plans with longer paths and smaller total
delays.

Finally, it turns out that the implementation of basic data structures like mappings and
sets also has a great effect on the total performance. It is tempting to closely stay with the
abstract data structures used in algorithm design and use a library of implementations for
maps and sets. Implementing sets and tuples by lists, and using so-called splay diets of the
Standard ML library to implement maps, however, significantly increased performance.

In spite of these optimizations, performance of both algorithms is still poor, and only small
examples can be treated in reasonable time. The major obstacle to better performance is that
resolving conflicts by delays results in an extremely high branching factor of the search tree.

Test runs show that the image modification algorithm is in general faster than the domain
extension algorithm. The difference in perfonnance increases with the branching degree of
the transportation net. We believe this justifies the extra effort needed to develop the global
search theory of Section 5.2.

The size of theories and programs are summarized in Table 1.
Approximately half of the ML code implements the data structures for the transportation

net, while the rest implements the actual scheduling algorithms. The code is well-structured
and highly reusable. Both algorithms share most of the code which facilitates exploring
alternatives.

The case study required an effort of approximately 9 person months. We spent about one
third of that time to learn the KIDS approach. Approximately 75% of the remaining time
was devoted to building the domain theory.

7. Related work

Approaches to algorithm design and program synthesis roughly fall in two categories.
The ones advocating a calculational style of program development like the Dijkstra/Gries
method (Gries, 1981), the refinement calculus (Morgan, 1990) or Dershowitz's approach
(Dershowitz, 1983) are tuned towards application by hand. Others like deductive program
synthesis (Bibel, 1980; Hanna and Waldinger, 1980), program construction based on type-
theory (Constable et al., 1986) and the approaches introduced in (Lowry and McCartney,
1991) focus on machine-supportable techniques. However, most of them, mechanized or
not, are oriented on the syntactical structure of logical formulas or programming language
constructs. They provide rules, e.g. to construct loops, or they describe how to synthesize
programs, e.g. from specifications with conjunctive postconditions.

www.manaraa.com

GLOBAL SEARCH ALGORITHM 27

The KIDS approach differs from these in that it provides design steps reflecting significant
design decisions. Algorithm theories abstract from implementation details for a particular
programming language and characterize classes of algorithms (not programs) by logical
theories. To achieve the effect of a design step like global search for a particular problem,
many rule applications would be needed in other calculi, and—more important— t̂hese steps
would have to re-invent the principles of search algorithms. The proof obligations arising
would incorporate correctness conditions of global search—intertwined with conditions on
the particular application domain and the specific code produced. Abstracting from these
details, KIDS separates algorithm design from optimization concerns, and makes design
knowledge amenable to re-use not on the level of code but on the conceptual level.

There are several attempts to improve confidence in the correctness of the synthesized
algorithms by mechanically verifying the underlying theory. Kreitz (1993) has formalized
global search in the Nuprl type theory (Constable et al., 1986). He specifically addresses
the problem of termination and prevents infinite branchings of the search tree by using
only finite sets in his formalization. He introduces wf-filters to prune infinite branches and
proposes to provide a collection of wf-filters for each theory.

The value of mechanical verification of design theories and program transformations is
much reduced if the relation between tools supporting the design process and the underlying
theories is not clear. The approach to build transformation systems presented in (Kolyang
et al., 1996) uses a generic theorem prover as the kernel of such a system. The prover is
used to verify design theories and transformations as well as to support their application.
This guarantees that the applied transformations are exactly the ones that have been verified.
The approach is illustrated by proving and applying a global search theory on the basis of
the generic theorem prover Isabelie (Paulson, 1994).

It seems to be unlikely to find "practically complete" knowledge bases for software
construction systems. Such systems should be designed to ease routine extension of their
knowledge bases so they can be adapted to specific application domains and grow with
the users' experience. In (Heisel et al., 1995), a generic system architecture based on the
notion of strategies is proposed. Strategy modules have a clearly defined interface to the
system kernel, so new ones can be integrated into the system in a routine way. The system
Specware (Srinivas and Jiillis, 1995) under development at Kestrel also seems to allow for
a modularized and easily extendible knowledge base.

Our case study relates to the research on design of transportation schedulers at Kestrel
(Smith and Parra, 1993; Smith et al., 1995). They study schedulers that assign trips to
resources like planes, ships, and trucks to meet movement requirements. In this setting,
trips fully occupy resources for an interval of time, i.e. the load of a resource cannot be
extended during a trip. Furthermore, a trip changes the availability of a resource: the
destination of one trip becomes the source of the next one. In baggage transportation,
however, load of resources can continually change as baggage flows through the net, but
source and destination points of a resource remain fixed in time.

Another difference lies in the focus of our work. For several years, a highly specialized
theory on transportation scheduling has been developed at Kestrel with the aim to produce
extremely efficient schedulers. Recently, this has even led to a refinement of the abstract
global search theory (Smith et al., 1995). The purpose of our case study, in contrast, has

www.manaraa.com

28 DICK AND SANTEN

been to study in how far the KIDS approach as documented in the literature can support
programmers who have no particular experience with the approach, to design algorithms
for a non-trivial problem.

8. Discussion

We focus the discussion of our experience with KIDS on three questions: why use a
formal approach instead of ordinary programming; what are the peculiarities introduced by
formality; and what are the distinct advantages and disadvantages of KIDS?

8.1. Why use a formal approach at all?

It is hard to speculate about the results an experienced programmer might have produced
who started with knowledge about the problem domain similar to ours when we began the
case study. But we can point out where formality helped us in the case study. In the first
circle of the process model of figure 7, we implemented a prototype in an "ad-hoc" way
to gain experience with the problem domain and come up with a first formal specification.
Given our poor understanding of the problem at that time, the prototype revealed many
aspects we had not been aware of. Formulating a specification afterwards and trying to
identify these aspects of the problem in the specification forced us to search for a suitable
level of abstraction to reason about the problem domain.

Having a formal specification and proving properties about it in the subsequent develop­
ment revealed problems like overlapping search spaces and non-termination that we might
have missed by just testing an implementation. Furthermore, tesdng was possible only af­
ter considerable optimization because the execution times—and traces—of non-optimized
algorithms for the transportation problem were overwhelmingly large.

Concerning errors in an optimized program, the question arises whether a bug stems from
the design or from the optimization. We believe that, although an experienced programmer
with the right intuition might have been able to solve these problems with the program as the
only "formal" document, formality helps in finding errors early and identifying their sources.

A formal specification not only provides an unambiguous, abstract documentation and
the possibility to prove correctness of code relative to the specification. With the KIDS ap­
proach, design decisions—to construct a global search algorithm, to use image modification,
what optimizations to apply—and their justifications are precisely documented as well.

8.2. Peculiarities introduced by formality

Some of the following observations may apply to formal methods in general, while arguably
in a stronger sense to the KIDS approach because it is constructive and poses stronger
requirements on the documents it deals with than mere "formal notations" or verification-
based approaches.

Due to their preciseness, the logical theories on which the approach is based provide
good reference points for software engineers who wish to learn and use them. Still, the

www.manaraa.com

GLOBAL SEARCH ALGORITHM 29

theory of global search algorithms is inherently complex and it takes considerable effort to
get a working knowledge of its application that enables one to map a particular problem to
its formal representation.

The approach requires the existence of a formal problem specification. It does not di­
rectly address the first phase of the development, before a sufficiently complete application
domain theory is available, which may be the most complex part of the process. We found
prototyping useful to understand the problem domain, but more elaborate techniques to
guide theory development remain to be established.

Moreover, the design theory one wants to apply later also influences theory development:
the domain theory must supply the "right" notions and must be syntactically structured in a
way that matches the design theory. For instance, defining plans as mappings from baggage
to routes helps to apply the finite mappings design theory because of the similar type
structure.

If the syntactic difference between the domain and design theories is too large, the con­
structive approach may be difficult to follow even if the domain theory semantically captures
all necessary requirements. Several component predicates and properties oi feasible^ath
defined in our domain theory serve to establish a terminology to adequately formulate in­
stances of the global search axioms. These predicates strongly depend on the way Split
is axiomatized. Thus a thorough understanding of the design theory is necessary to focus
theory development.

Given a domain theory, the steps in designing a global search algorithm: specializ­
ing a theory, deriving filters, and applying optimizing program transformations, provide a
clear separation of concerns. Specialization determines the basic structure of the search,
necessary filters exploit properties of the application domain, and only the final program
transformations and data type refinements eliminate redundancies in the code and "fuse"
filters with the basic search structure to gain efficiency.

Each of these tasks corresponds to one cycle in the process model that we introduced in
Section 4. Thus the model helps programmers to focus activities on a particular task and to
avoid introducing certain design ideas at the "wrong" time into the development. In early
attempts to design the algorithm of Section 5.2, we tried to introduce optimizations too
early—trying to generate delayed routes only if necessary—which made our design much
too complex.

8.3. KIDS specific issues

Let us review our decision not to use the implemented system KIDS but to try and apply
the underlying "approach" manually. Initially, this decision was motivated by the steep
learning curve we expected a complex system like KIDS to have. We also wanted to make
sure that we would be able to track down difficulties with the case study to their proper
sources: peculiarities of the case study or problems inherent in the KIDS approach. If
we had relied on the system, then we could not have ruled out problems stemming from
the implementation being a research prototype, or from our lacking experience using the
system. To do so, we would have had to reconstruct the workings of the system, basically
doing what we actually did when applying the approach manually.

www.manaraa.com

30 DICK AND SANTEN

In retrospect, we believe this decision is justified. Although we lost the possibility to
actually apply optimizing program transformations, for the main task, namely to work with
the global search design theory, our decision proved advantageous. The entire development
of the image modification algorithm in Section 5.2 would not have been possible if we
had confined ourselves to the working system. The system does not have an open design,
and introducing a new global search theory would have been impossible for us to do.
Furthermore, we would have needed to modify the specialization procedure to use the new
theory, which again is a major programming task. Both, the approach and the system lack
support for constructing new algorithm theories and incorporate them into the working
system. These non-trivial tasks deserve support if the approach shall be applied routinely,
because for routine applications tool support is indispensable.

Our experience with the image modification algorithm shows that it is advisable to stick
to the approach even if no design theory supporting a particular design idea is available.
In this situation, it pays to develop a new design theory diat describes the desired search
strategy in an abstract way. In (Dick, 1994), we decided to construct the problem specific
algorithm theory of Section 5.2 in one step and to manually verify it against the abstract
global search theory. This decision was mainly due to lack of experience and increased the
complexity of the task considerably. Moreover, it led to a less efficient algorithm.

A problem of a more technical nature is that termination of the constructed algorithms
is not addressed by the global search theory we have used. This lead us to the somewhat
unnatural introduction of the upper bound md{g, bs) on delays (cf. Section 5.1). Termi­
nation of global search algorithms can be spoiled in two ways. There may be branches of
die search tree with infinite length, or there may be nodes with infinitely many children. In
(Smith, 1990), a well-founded ordering is introduced into the abstract global search theory
to prevent infinite chains of 5p//f-operations. There are reasons not to require termination
of all global search theories—termination may be addressed only when a library theory
is specialized—but we would appreciate a systematic way that relieves programmers of
dealing with termination on-the-fly.

As many formal techniques, KIDS cannot deal explicitly with non-functional require­
ments such as efficiency and maintainability, but the formal theory of filters in (Smith, 1987)
guides the search for possible optimizations. Since the approach is constructive, domain
theories and code are well-structured and well-documented. This enhances requirements
traceability and maintainability. Furthermore, with a domain theory at hand, the KIDS
approach is well suited to construct prototypes in little time, and to explore alternative
designs.

Finally, KIDS is one of the few approaches combining formality with the representation
of software construction steps of considerable complexity. A library of algorithm theories
makes standard design knowledge explicit and formally accessible. Application of design
theories takes place at a much higher level of abstraction than with the language oriented
rules many other formal program design calculi supply. We believe that, in correspondence
with conceptual developments like design patterns and software architectures in software
engineering in general, formal methods have to adapt larger patterns of reasoning and build
a theory of software construction that allows reasoning at abstract, problem oriented levels.
KIDS shows a step in this direction.

www.manaraa.com

GLOBAL SEARCH ALGORITHM 31

Acknowledgments

We would like to thank David Basin, Maritta Heisel and Burkhart Wolff for fruitfuU dis­
cussions. David, Maritta, Klaus Didrich and Martin Simons provided comments on drafts
of this paper. Thanks also to the reviewers' whose comments helped to improve the pre­
sentation.

Note

L Note, that there is no easy way to extend the "library" of global search theories of the implemented system
KIDS because it is hard-coded into the implementation. Hence, we could not have used the system to work
with the theory on image modification decribed in Section 5.2.

References

Bibel, W. 1980. Syntax-directed, semantics-supported program synthesis. Artificial Intelligence, 14:243-261.
Boehm, B.W. 1988. A spiral model of software development and enhancement. IEEE Computer, 21(5):61-72.
Constable, R. et al. 1986. Implementing Mathematics with the Nuprl Proof Development System, Prentice Hall.
Dershowitz, N. 1983. The Evolution of Programs, Birkhauser
Dick, S. 1994. Eine Fallstudie zur Entwicklung korrekter Software: Steuerung einer Gepackforderanlage. Master's

thesis, Dept. of Computer Science, Technical University of Berlin.
Gries, D. 1981. The Science of Programming, Springer-Verlag.
Heisel, M., Santen, T, and Zimmerraann, D. 1995. Tool support for formal software development: A generic

architecmre. In Software Engineering—ESEC'95, W. Schafer and P. Botella (Eds.), LNCS 989, Springer Verlag,
pp. 272-293.

Kolyang, Santen, T, and Wolff, B. 1996. Correct and user-friendly implementation of transformation systems. In
FME'96—Industrial Benefits and Advances in Formal Methods, LNCS, Springer Verlag.

Kreitz, C. 1993. Meta-Synthesis. Deriving Programs that Develop Programs, Technische Hochschule Darmstadt.
Lowry, M. and McCartney, R.D. (Eds.) 199\. Automating Software Design, Menlo Park: AAAI Press.
Manna, Z. and Waldinger, R. 1980. A deductive approach to program synthesis. ACM Transactions on Program­

ming Languages and Systems, 2:90-121.
Morgan, C. 1990. Programming from Specifications, Prentice Hall.
Paulson, L.C. 1994. Isabelle—A Generic Theorem Prover, LNCS 828, Springer Verlag.
Smith, D.R. and Lowry, M.R. 1989. Algorithm theories and design tactics. In Proc. International Conference on

Mathematics of Program Construction, J. van de Snepscheut (Ed.), Lecture Notes in Computer Science 375,
Springer Verlag, 379-398.

Smith, D.R, 1987. Structure and design of global search algorithms. Technical Report Kes.U.87.12, Kestrel
Institute.

Smith, D.R. 1990, KIDS: A semiautomatic program development system. IEEE Transactions on Software Engi­
neering, 16(9): 1024-1043.

Smith, D.R. and Parra, B.A. 1993. Transformational approach to transportation scheduling. In Proceedings of the
Eighth Knowledge-Based Software Engineering Conference, Chicago.

Smith, D.R., Parra, E.A., and Westfold, S.J. 1995. Synthesis of high-performance transportation schedulers.
Technical Report KES.U.95.6, Kestrel Institute.

Srinivas, J.V. and Jiillig, J. 1995. Specware: Formal support for composing software. In Proceedings of the Third
Conference on Mathematics of Program Construction.

Pressburger, T.T., Gilham, L., and Smith, D.R. \99\. Kestrel Interactive Development System, Version 1.0, Kestrel
Institute.

www.manaraa.com

Automated Software Engineering, 4, 33-51 (1997)
© 1997 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands,

Specification and Animation of a Bank Transfer
using KIDSA^DM

YVES LEDRU yves.ledru@iniag,fr
Laboratoire Logicieb Systemes Reseaux, IMAG, B.P. 53, F-3804I Grenoble cedex 9, FRANCE

Abstract. The development of formal specifications may benefit from prototyping activities. The production of an
executable model for a given description helps bridging the gap between this specification and the corresponding
reality. The KIDSWDM system, based on the KIDS environment, provides these prototyping facilities for the
model-based specification language of VDM. This paper illustrates its use in the specification of a bank transfer
operation. The specification process starts from an abstract specification and details it by a series of refinements of
either the control flow or the data structures. The case study shows how animation may be helpful at several stages
of the process. It favours the dialog between the specifier and his customer and helps assessing the correspondence
between the description and the actual problem. It also convinces the specifier of the validity of his refinements
before he fulfills the necessary proof obligations.

Keywords: formal methods, prototyping, VDM, refinements, program synthesis

1. Introduction

Recent reports [6, 4] have shown that model-based formal methods like Z [22] or VDM
[11] are becoming part of industrial practice for critical applications, especially at the
specification stage. The specification languages associated with these methods are mainly
mathematical notations to express the precise description of a given system.

A first generation of tools has been proposed to support these formalisms. It is based on the
syntax and static semantics of these languages, and ensures the syntactical conformance of a
given text to the definition of the formalism. But syntactical conformance to a mathematical
notation does not guarantee the high quality of a specification, which is the expected benefit
of these techniques. For example, the mathematical formula 2; > 5 A re < 1 can not be
verified by any x value. It corresponds thus to a specification that can not be fulfilled.

A formal method like VDM provides several techniques to check that a specification
has interesting mathematical properties (invariant preservation and implementability). For
example, it defines a necessary condition for the implementability of specifications. The
application of these techniques allows one to produce a consistent piece of mathematics but
does not address an important topic in the validation of specifications: does it correspond
to some real world problem?

One way to get further convinced of this correspondence is to produce an executable
model of the specification and to confront it with the real world, e.g. by demonstrating it to
a customer. This may be achieved by using an executable specification language, which is
not the case for VDM and Z. The pros and cons of executable specifications have already
been debated, among others in [8, 14]. As far as VDM is concerned, several attempts have
been performed towards executable specifications [7, 13]. Two strategies may be followed:

www.manaraa.com

34 LEDRU

• to concentrate on a subset of executable constructs of the language. This turns the spec­
ification language into a progranuning language. It may lead the specifier to overlook
the non-executable constructs of the specification language and to specify unnecessary
details for executability concerns.

• to informally translate the specification into a programming language close to the spec­
ification language. This distinction between languages prevents overspecification, but
the link between specification and prototype is only informal and errors may result from
the translation process. Moreover, the production of two descriptions, the specification
and its prototype, increases the cost of the development.

This latter approach may be improved by an adequate tool support which

• ensures the correspondence between specification and prototype;

• automatizes parts of the development.

KIDSA^DM provides such a solution for the production of prototypes from VDM spec­
ifications. It exploits two knowledge-based software engineering tools: the REFINE^
language [21] and the KIDS system [20]. The goal of this paper is to illustrate the use of
KIDS/VDM on a case study and show how these techniques may be helpful in the specifi­
cation process. A more complete description of KIDSA'̂ DM, its principles and limitations
can be found in [16].

Secfion 2 presents the case study, introduces the VDM method and proposes a first
specification. Section 3 features two refinements of the initial specification and shows the
benefit of this tool support. Finally, section 4 draws the conclusions of this work.

2. Abstract specification of a bank transfer

At the 16th International Conference on Software Engineering, several participants of the
Workshop on Software Engineering and Artificial Intelligence were asked by M. Feather to
work on examples taken from the "Barclay's Code of Business Banking"[2]. This document
explains the general principles of the operation of this bank. The bank transfer example
presented here is based on common knowledge about business banking, combined with sev­
eral elements from that document. Its objective is to illustrate how a VDM developer could
use his tools for this kind of specification activity. Another response to this problem has
been proposed by Chung and his colleagues [5]: it focuses on non-functional requirements
and the support of change.

2.1. Reuse of an existing specification

A good starting point in specification is to reuse an existing description of a bank transfer.
The following VDM specification is taken from the teaching notes of [11].

www.manaraa.com

SPECIFICATION AND ANIMATION OF A BANK TRANSFER USING KIDS/VDM 35

2.1.1. Types and state variables

A VDM specification describes an "abstract machine", i.e. global variables associated with
operations. The definition of state variables starts with the introduction of types:

• Acno (account number) is a simple natural number

Acno = PI

• Acdata (account data) groups in a record the name of the owner of the account {own),
the current balance {hal), i.e. the amount of money available, and the absolute value of
the overdraft limit {od), i.e. the limit on the possible negative balance; an invariant on
the type Acdata constrains the balance to be greater than or equal to the overdraft.

Acdata :: own : char*
bal : Z
od : n

inv {mk-Acdata[own, hal, od)) ^ bal > -od

Once types have been defined, the state variables are introduced. Here, the state of the
specification is made up of a single global variable am (accounts map) that stores a map
from account numbers to account data.

Bank :: am : Acno —-̂ Acdata

2.1.2. Operations on the state

In VDM, each operation is defined in terms of a pair of predicates that specify its pre- and
post-conditions. In this case study, operations include: creation of a new account, deletion
of an account, modification of account data such as the owner or the overdraft limit, and
operations on the amounts stored on the accounts. In this paper, we will concentrate on the
transfer operation (TRANSF).

• It takes three arguments as input: fr.ac, the account which will be debited, to-ac,
the account which will be credited, and a, the amount of money transferred. This last
parameter is a natural number strictly greater than zero.

• The operation has read and write access to the global variable am.

• A pre-condition states that both accounts given as inputs must be in the domain of the
am map, that they must be different, and that the balance and overdraft associated with
fr^ac must allow the transfer to take place.

• The post-condition expresses the final values of the state variable after the execution of
the operafion. It states that am, is overwritten by a new map which only modifies the
balances of both accounts given as parameters.

www.manaraa.com

36 LEDRU

TRANSF {fr_ac: Acno, to.ac: Acno, a: Ni)

ext wr am : Acno - ^ Acdata

pre fr.ac e dom am A to.ac e dom am A fr-ac ^ to.ac
A bal{am{fr.ac))-a > -od{am(fr.ac))

post am = am f {fr.ac >—^ jj,(am{fr-ac), bal >-* bal(am{fr.ac))-a),

to.ac H-> fj.(arh{to.ac), bal i-+ bal{am{to.ac)) + a)}

Some VDM notations need further explanations.

• The "hook" symbol (̂ —), used in the post-condition, denotes the initial value of the
state variable.

• The overriding operator (f) is a binary operator on maps which returns the union of the
second map with the pairs of the first map which are outside its domain.

• The fi function takes two arguments: a record and an association of a record field with
a value. It returns the value of its first argument where the specified field has been
replaced by the given value.

In the proposed ISO VDM standard [1], the specification of the initial state is a component
of the state specification. Here, we use a slightly different (but equivalent) approach where
the initial state is specified as an operation. In this case study, the post-condition of INIT
specifies an initial state with three accounts. For example, account 1 is owned by John, has
a positive balance of 25000 and an overdraft limit of 10000.

INIT

ext wr am : Acno -^ Acdata

pre true

post am = {1 (-* mfc-^crfato(John, 25000,10000),
2 i—> mk-Acdata{Paul,0,0),
3 ^ mk-AcdatalGeoTge,500Q, 10000)}

2.1.3. Proof obligations

Once a VDM specification has been stated, it must be proved to fulfill several mathematical
properties. First, the invariants and types must be preserved by the operations. Second,
the operation must be implementable, i.e. there must exist a final state that satisfies the
post-condition provided the pre-condition was satisfied.

In this case, implementability is easy to demonstrate since the post-conditions provide
the new values of the state variable. The main point is to check that the invariant associated
with type Acdata is preserved by the operations, i.e. that the balance remains greater than
the overdraft limit. This is obvious for INIT, since all balances are positive. As far as
TRANSF is concerned, this is guaranteed by the last conjunct of the pre-condition.

The careful examination of these proof obligations may be stated more formally. Several
books [11,3] provide the necessary detailed framework to do so. It may even be supported by

www.manaraa.com

SPECIFICATION AND ANIMATION OF A BANK TRANSFER USING KIDS/VDM 37

a proof assistant [12]. Nevertheless, in practice, this proof activity is most often performed
very informally.

Further validation of the specification may be carried out by cross-reading or inspections.
But a specification like the one of TRANSF involves a mathematical jargon that may only
be read (and understood) by a VDM expert. This process guarantees that the specification
is a consistent piece of mathematics but does not assess that this mathematical model
corresponds to the described reality.

2.1.4. Validation of the specification

In order to achieve a high quality specification, this specification should be validated by
a bank specialist, who will presumably be unable to read the mathematical text of the
specification. A dialog must thus take place between him and the developer. One way to
facilitate this dialog is to prototype the specification.

2.2. KIDS/VDM

The original idea of KIDSA'̂ DM [18, 16] is to exploit the similarities between the specifi­
cation language of VDM and the executable language REFINE [21]. Both languages share
the same data types and data structures (sets, sequences, maps) and REFINE provides a
wide spectrum of control constructs (functional, declarative, imperative). Experiments have
shown that a VDM specification can be informally transformed into a REFINE program
[17].

The Kestrel Interactive Development System (KIDS) [20] supports the synthesis of RE­
FINE programs from functional specifications, written in a language named REGROUR
This synthesis process corresponds to the application of design tactics (e.g. global search,
divide and conquer), simplifications by a theorem prover, and code optimizations. Every
synthesis step is performed under the control of the environment which guarantees the
correctness of the code with respect to its specification.

KIDSA'̂ DM exploits the capabilities of the KIDS environment to

• control and support the transformation of VDM specifications into REFINE code;

• help discharge proof obligations of the VDM specification [15].

This second feature will not be considered in this paper which focuses on the use of
KIDSA'̂ DM to animate specifications.

The original KIDS environment supports two major modes (Fig. 1):

• the program development mode includes tools for the synthesis of programs from spec­
ifications;

• the theory development mode proposes tools to help the expression of REGROUP
specifications and the development of inference rules for the theorem prover.

www.manaraa.com

38 LEDRU

Kestrel Interactive Development System

Theory Development Mode Program Development Mode

REGROUP Spec.

I step 3

REFINE Prgm.

step

VDM Mode

VDM Spec.

step 1

VDM Spec.

i.

Figure 1. Prototyping a specification within KIDSWDM

The KIDSA'̂ DM environment adds a new mode to KIDS to support transformations of
VDM specifications (Fig. 1). A typical development of a VDM specification goes through
three main steps:

1. transformations of the original VDM specification, in the VDM mode; these transfor­
mations are automatic and rewrite several language constructs (e.g. subtyping) into a
form closer to REGROUP;

2. translation of the resulting VDM specification into a combination of REGROUP spec­
ifications and REFINE programs;

3. synthesis of REFINE programs from these specifications, in the program development
mode.

The principles of this process have already been detailed [18]. It is essentially automatic:
interactions mainly occur in the KIDS development mode in order to select the design tactic
or guide the optimization and simplification activities. Recent work on this system [16]
has kept the underlying principles of the translation; it has increased the coverage of the
VDM specification language, added design and proof knowledge in order to better support
the kind of developments involved, and improved the automatization of the process.

In this case study, the following REFINE program has been automatically synthesized
for TRANSF.

function TRANSF(FR-AC: integer, TO-AC: integer. A: integer)
: any-type

= let(TRANSF-TUPLE: tuple(AM: map(integer, tuple<OWN: seg(char),
BAL: integer,
OD: integer)))

= TRANSF-F(FR-AC, TO-AC, A, AM))
AM <- TRANSF-TUPLE.1

www.manaraa.com

SPECIFICATION AND ANIMATION OF A BANK TRANSFER USING KIDS/VDM 39

It is a side-effecting function that modifies the AM variable by assigning to it the result of
the TRANSF-F function. In the l e t constract, TRANSF-TUPLE is a tuple which is defined
as the application of TRANSF-F to the input values of the function and the initial value of
the global variables affected by the operation. Here AM is the only variable affected, so that
the tuple is reduced to a single field.

TRANSF-F is a pure function that takes the initial value of state variable AM as an argument
(named OLD-AM) and returns the new value of this variable. Its specification is automatically
generated from the VDM specification. It is then transformed into the REFINE code
listed below by the application of the KIDS tactic "spec-to-code". This tactic extracts
the new value of AM from the equality in the post-condition. It also checks that several
typing constraints are verified by the result: INV-NATURAL-4 and INV-NATURAL-1-4

respectively check that the account numbers and overdraft are natural values, INV-BAL-

OD-2 checks that the typing invariant of Acdata is verified. A further KIDS optimization
step has introduced the local variables c -1 , c-2, and c-3 in order to avoid computing c-1
four times, c-1 is the actual result of the function: the corresponding l e t construct is the
direct translation of the post-condition of the VDM TRANSF specification.

function TRANSF-F (FR-AC: integer, TO-AC: integer, A: integer,

OLD-AM: map(integer,tuple(OWN: seq(char),

BAL: integer, OD: integer))

I . . .)
returns

(TRANSF-TUPLE: tuple(AM: map(integer,tuple(OWN: seg(char),

BAL: integer, OD: integer)))

= let{C-3: tuple(OWN: seq(char), BAL: integer, OD: integer)

= OLD-AM(TO-AC),

C-2: tuple(OWN: seq(char), BAL: integer, OD: integer)

= OLD-AM(FR-AC))

let(C-1: map(any-type, any-type)

= OVERRIDES(OLD-AM,

{| FR-AC -> (let (var XXX: tuple(OWN: seq{char),

BAL: integer, OD: integer) = C-2)

XXX.BAL <- C-2.2 - A; XXX),

TO-AC -> (let (var XXX: tuple(OWN: seq{char),

BAL: integer, OD: integer) = C-3)

XXX.BAL <- C-3.2 + A; XXX) |}))

if INV-NATURAL-4(C-1) & INV-NATURAL-1-4(C-1) & INV-BAL-OD-2(C-1)

then <C-1> else undefined

The REFINE language does not provide a map overriding operator. To support the
translation of VDM specifications, it has thus been defined as a function in a general
purpose KIDS theory:

func t ion OVERRIDES(ml,m2): map (a n y - t y p e , a n y - t y p e)

www.manaraa.com

40 LEDRU

= {| X -> (if defined?(m2(x)) then m2(x) else ml(x))
I(x) x in (domain(ml) union domain(m2))|}

This definition only provides a way to compute map overriding, i.e. a map comprehension.
In order to perform code simplifications, the theory should be complemented with axioms
and theorems about this operator.

In summary, the synthesis of the prototype proceeds mainly automatically. The signif­
icant interactions with the environment are the choice of the spec-to-code tactic and the
optimization of the resulting code. The resulting REFINE code has then been compiled
into executable form.

The KIDSA'̂ DM development may be carried on further in order to simplify the resulting
program: in the context of the pre-condition, it may be proved that the guard of the i f
. . . then . . . e l se construct is always true and that the program may be simplified to
<c-l>. Such a simplification not only speeds up the execution of the prototype, but also
provides a proof of the implementability of the specification because TRANSF-F may no
longer return undefined. Yet, performing this simplification is a proof process that may
involve extensive user interaction.

2.3. Execution of the prototype

2.3.1. A typical execution

The execution of the prototype may give the following scenario:

• At the beginning, the am variable exists but its content is undefined.

.> am
RE:*UNDEFINED*

• The INIT operation is performed and the content of am is checked. Actually, since
no output is specified for INIT or TRANSF, they return the new value of the state
variable.

.> (i n i t)
((1 "John" 25000 10000) (2 "Paul" 0 0) (3 "George" 5000 10000))
.> am
((1 "John" 25000 10000) (2 "Paul" 0 0) (3 "George" 5000 10000))

• A transfer of an amount of 1000 is executed between accounts 1 and 2. It may be checked
that it modifies the accounts of John and Paul, and does not affect other accounts.

.> (t r a n s f 1 2 1000)
((1 "John" 24000 10000) (2 "Paul" 1000 0)
(3 "George" 5000 10000))

www.manaraa.com

SPECIFICATION AND ANIMATION OF A BANK TRANSFER USING KIDS/VDM 4 1

• An illegal transfer is tlien attempted: Paul has no permitted overdraft and tries to transfer
more than his balance. First, the pre-condition, prototyped by a similar process, may
be evaluated:

-> (p r e - t r a n s f 2 1 10000 am)
NIL

REFINE being constructed upon LISP, NIL corresponds to false; the pre-condition is
thus not fulfilled by these input values. An attempt to perform the transfer results in:

-> (transf 2 1 10000)
Error: Received signal number 11 (Segmentation violation)

Actually, the semantics of VDM operations mean that if an operation is started with a
false pre-condition, anything may happen! In fact, TRANSF has called TRANSF-F which
has returned undefined; then an error occurred as the interpreter tried to extract the
first field of this value.

23.2. The VDM Animator

In order to facilitate this animation, the KIDS/VDM environment provides a graphical
interface to the prototype (Fig. 2). The "VDM animator" visualizes the metaphor of the
abstract machine. The abstract machine stores internal variables that are affected by its
operations. The State Variables window displays the current contents of the internal state
(here, variable AM). The operations of the abstract machine appear as mouse-sensitive
words in the Buttons window. The user may click on these buttons to apply the operations
to the machine. The contents of the State Variables window are updated accordingly.
Operations may also take additional input parameters and deliver some output values through
the Input and Output windows.

The VDM animator is automatically instantiated from the text of the corresponding VDM
specification. The buttons and variables are then linked to the REFINE variables and
functions produced by the prototyping process.

In practice, the VDM animator provides an easy way to experiment with the resulting pro­
totype. The user has a comprehensive look at all variables of its specification, provided that
these fit into a single window, and has a user-friendly access to its operations. Nevertheless,
this interface suffers serious Umitations to scale up.

• When the specification includes a large number of operations, the user needs a more
structured access to the Buttons window than the current linear menu. Also, it would be
interesting to highlight applicable operations, i.e. the ones whose pre-conditions may
be fulfilled by the current state provided adequate input values are given.

• When the number of variables or their size scales up, a textual description of the contents
is not sufficient. For example, if the am variable included 1000 bank accounts, it would
be difficult to extract the relevant information from the State Variables window. One way
to cope with this problem is to ask the developer to provide an application dependent

www.manaraa.com

42 LEDRU

interface to these data structures. But the development cost of this special purpose
interface is not always compatible with a rapid prototyping approach.

A CDmmon Window

The VDM Abstract Mae}iiiie Aiumator : BANK-ICSE

Output values
((1 John 24000 10000) (2 Paul 1000 D) (3 George SOOO 10000))

Input \icuues

State Vanables
AM -> ((1 John2<1000 10000)(2 Paul 1000 0)(3 George5000 10000))

Buttons (Operations)
INfT
TRANSF
INV-BAL-OD

Figure 2. The VDM animator

3. Refinements of the specification

The VDM method allows one to refine abstract specifications into more concrete ones. This
refinement mechanism is usually considered as a way to fink specifications to programs but
it may also be used to further develop specifications. In this case study of bank transfer,
both refinements of control structures and data structures are presented. First the debit and
credit operations are introduced, then the data structure representing an account is further
developed.

3.1. Refining the control flow

The specification of the bank transfer proceeds with the decomposition of TRANSF into
DEBIT and CREDIT. This decomposition is intended to model the following statement
of the bank code:

When you pay a cheque into your bank account at the branch where you have your
account, the amount of the cheque will be shown on your statement as being credited

www.manaraa.com

SPECIFICATION AND ANIMATION OF A BANK TRANSFER USING KIDS/VDM 4 3

to your account on that day. So the value of the cheque appears to be available for
you to use immediately.

Therefore, the transfer may be specified as a sequential combination of operations:

TRANSF{fr, to, a) A CREDIT{fr, to, a); DEBIT{fr, to, a)

In order to make the amount of the cheque directly available, the credit operation is
performed first; the debit takes place when the cheque has been processed completely. This
models the corresponding statement:

The cheque has to be sent to the branch of the bank on which it is drawn.

The specifications of CREDIT and DEBIT result from the split of the pre- and post­
conditions of TRANSF. The pre-condition of CREDIT states that the credited account
number must exist and is different from the debited account. Its post-condition expresses
the modification of the am map.

CREDIT {fr-ac: Acno, to.ac: Acno, a: Ni)

ext wr am : Acno —> Acdata

pre to-ac € dom am Afr^ac ^ to.ac

post am = 'am f {to_ac i—+ n{am{to-ac), bal H->- bal{am{to.ac)) + a)}

Similarly, the pre-condition of DEBIT ensures that the debited account exists, that it
is different from the credited account, and that its balance and overdraft hmit allow the
transfer to take place. The post-condition expresses the modification of the am map.

DEBIT {fv-ac: Acno, to.ac: Acno, a :Ni)

ext wr am : Acno ^ ^ Acdata

pre fr.ac e dom am A fr.ac ^ to^ac A bal{am(Jr^ac))-a > -od{am{fr-ac))

post am — "am, f {fr-ac i-> p.{am{fr-ac), bal i—> bal{am{fr.ac))-a)}

Using Hoare Logic or the logic of VDM, it is possible to show that the sequential combi­
nation of these operations is a valid implementation of TRANSF. But before performing
this proof, the developer may want to convince himself that this refinement has the expected
behaviour by animating it. So the transfer of 1000 between accounts 1 and 2 corresponds
to the following sequential execution.

. > am
({1 "John" 25000 10000) (2 "Paul" 0 0) (3 "George" 5000 10000))
.> (credit 1 2 1000)
{(1 "John" 25000 10000) (2 "Paul" 1000 0) (3 "George" 5000 10000))
.> (debit 1 2 1000)
((1 "John" 24000 10000) (2 "Paul" 1000 0) (3 "George" 5000 10000))
. >

www.manaraa.com

44 LEDRU

This combination of operations produces the same resuh as the single execution of
TRANSF. Obviously, a single test case is not sufficient to demonstrate the correctness
of the refinement. Moreover, although implementation freedom tends to be limited in
banking applications, a specification may admit several correct refinements with different
behaviours. Nevertheless, these tests provide clues on the correctness of the decomposition.
Being convinced of the correctness of his refinement, the developer may then proceed with
its formal proof.

3.2. Refining the data structures

A careful examination of the trace of the previous animation reveals that, after the execution
of CREDIT, the total amount of money recorded on the accounts of John and Paul (26000)
is greater than the amount effectively stored in the bank (25000). The developer may suspect
some error in his specification, as confirmed by a careful reading of the bank rules:

The money is not immediately transferred from the account of the writer of the
cheque to your own account. Instead, the cheque has to be sent to the branch of
the bank on which it is drawn. Only when the account of the writer of the cheque
is debited is the value of the cheque transferred to your account - this process is
called 'clearing' the cheque. While the cheque is being processed it is described
as 'uncleared for interest'; when you actually receive the value of the cheque it is
described as 'clearedfor interest'.

What is important for you is that if you withdraw the money from your account before
the cheque is 'cleared for interest', you may become overdrawn for the purpose of
calculating interest and you will then be charged interest on this overdraft.

Instead of performing a further refinement of the control flow, the developer decides to
refine his data structures in order to introduce an "effective balance" field {ebal) in Acdata.
This effective balance corresponds to the amount cleared for interest.

Acno = H

Acdata own :
hal :

ebal :
od :

; char'
: Z
: Z
: N

inv (mk-Acdata{own, bal, ebal, od)) ^ bal > -od A bal > ebal

The invariant associated with this new data type still enforces the relation between balance
and overdraft. It also states that the effective balance is always lower than or equal to the
balance. This means that the customer never has more on his account than reported, but may
have less money than he thinks and subsequently might pay unexpected interest charges.

In order to prove that this refinement is correct, the developer must provide a "retrieve
function" which returns the abstract representation from the concrete one. In this case, the

www.manaraa.com

SPECIFICATION AND ANIMATION OF A BANK TRANSFER USING KIDS/VDM 4 5

retrieve function is obvious; it only masks the ebal field of the concrete representation. The
developer must then prove several mathematical properties of this function (e.g. for every
valid abstract value, a concrete representation may be found). Here, the animation facilities
of the KIDSA'^DM environment don't really help.

Still, the refinement of the data structures also impacts on the specification of the associated
operations. CREDIT and DEBIT should be refined in order to conveniently update the
ebal field of the accounts. Two alternate refinements may be considered at this stage.

In the first refinement, the CREDITl operation simply affects the balance. The effective
balance remains unchanged; its modification only takes place when DEBITl is performed.

CREDITl {fr.ac: Acno, to.ac: Acno, a: Ni)

ext wr am : Acno - ^ Acdata

pre to.ac e dom am A fr-ac ^ to.ac

post am = am f {to.ac \-^ iJ,(am{to.ac), bal i—>- bal(am{to-ac)) + a)}

DEBITl {fr.ac: Acno, to.ac: Acno, a: Ni)

ext wr am : Acno - ^ Acdata

pre fr.ac e dom am A fr.ac ^ to.ac
A bal{am{fr.ac))-a > -od{am{fr-ac))

post am = am f {fr.ac H .̂ jj,(ij,{am{fr.ac), bal i—> bal{am(fr.ac))-a),

ebal I—> ebal{am{fr.ac))-a),
to.ac i—> }j,{am{to.ac), ebal H-* ebal(tmi(to.ac)) + a)}

The animation gives thus the following trace^: CREDITl only modifies Paul's account
and DEBITl modifies both. As far as the own, bal, and od field are concerned, the results
of both abstract and concrete operations are identical.

.> (i n i t)
({1 "John" 25000 25000 10000} (2 "Paul" 0 0 0))
.> (creditl 1 2 1000)
((1 "John" 25000 25000 10000) (2 "Paul" 1000 0 0))
.> (debitl 1 2 1000)
({1 "John" 24000 24000 10000) (2 "Paul" 1000 1000 0))

In the second possible refinement, the transferred amount is immediately debited from
the effective balance of fr.ac when CREDIT2 takes place. It is only credited to to.ac at
the execution of DEBIT2. As far as the effective balance is concerned CREDIT2 is a
debit operation and DEBIT2 is a credit: the transfer is in fact a sequence of debit followed
by credit.

CREDIT2 {fr.ac: Acno, to.ac: Acno, a: Ni)

ext wr am : Acno -^ Acdata

pre to.ac G dom am A fr.ac ^ to.ac

post am ~ cm f {fr.ac H-> jj,{am(fr.ac), ebal *-> ebal{am(fr.ac))-a),

to.ac i-> iJ,(am{to.ac), bal t-> bal(am{to.ac)) + a)}

www.manaraa.com

46 LEDRU

DEBIT2 (fr.ac: Acno, to.ac: Acno, a: Ni)

ext wr am : Acno —> Acdata

pre fr-ac e dom am Afv-ac ^ toMC
A bal(am(fr.ac))-a > -od{am{fr-ac))

post am = 'am f {fr.ac (->• fjb(am{fr.ac), bal i-^ bal(am{fr.ac))-a),

to-ac I—> /j.(ajn(to.ac), ebal »-> ebal{am{to^ac)) + a)}

The animation confirms this understanding of the specification: after CREDIT2 the total
amount of money recorded on the effective balances is lower than the amount of money
stored in the bank. Once again, one may compare abstract and concrete behaviours to get
clues on the correctness of the refinement.

.> (i n i t)
((1 "John" 25000 25000 10000) (2 "Paul" 0 0 0))

.> (credit2 1 2 1000)

((1 "John" 25000 24000 10000) (2 "Paul" 1000 0 0))

.> (debit2 1 2 1000)

((1 "John" 24000 24000 10000) (2 "Paul" 1000 1000 0))

Deciding which of these alternate concrete refinements is the right one is out of the scope
of this paper. Presumably, this decision, which is mainly a business concern, will result
from a discussion between the developer and a representative of the bank. The animation
of the specification may help the communication between these persons.

During this dialog, new problems may arise like the following one. This trace shows how
the interleaving of two transactions may lead Paul to a negative effective balance.

.> (i n i t)
((1 "John" 25000 25000 10000) (2 "Paul" 0 0 0)

{3 "George" 5000 5000 10000))

.> (credit2 1 2 15000)

((1 "John" 25000 10000 10000) (2 "Paul" 15000 0 0)

(3 "George" 5000 5000 10000))

.> (credit2 2 3 10000)

{(1 "John" 25000 10000 10000) (2 "Paul" 5000 -10000 0)

(3 "George" 15000 5000 10000))

.> (debit2 2 3 10000)

((1 "John" 25000 10000 10000) (2 "Paul" 5000 -10000 0)

(3 "George" 15000 15000 10000))

.> (debit2 1 2 15000)

((1 "John" 10000 10000 10000) (2 "Paul" 5000 5000 0)

(3 "George" 15000 15000 10000))

It reveals a problem in the code of the bank: Paul will have to pay interest charges but,
since he has no permitted overdraft, he never signed any agreement with the bank on the
charged interest rates!

www.manaraa.com

SPECIFICATION AND ANIMATION OF A BANK TRANSFER USING KIDS/VDM 4 7

4. Conclusions

4.1. Uses of prototyping

The presentation of this case study has tried to demonstrate how a specification process
may benefit from a prototyping tool. The use of this tool may take several forms:

Dialog support. It supports the dialog between a specifier and his customer. The exe­
cution of a prototype is usually closer to the customer's concerns than the mathematical
statement of the specification. In the bank transfer case study, this interaction with the
customer is needed to choose between CREDITl and CREDIT2.

Understanding. It helps the developer understand his specification because it leads him
to take a different viewpoint at his specification than the purely mathematical viewpoint.
For example, the animation of CREDIT leads to discover that there is more money on
the accounts than in the bank.

Error detection. The syntactical checks, the development, or the execution of the
prototype may fail and reveal an error in the specification. In this case study, an error was
detected in the original specification of C. Jones: the precondition of TRANSF stated
XhaXhal - a > od instead of bal - a> -od. Such a specification is too restrictive because
it asks the customer to have a very positive balance before performing the transfer. This
kind of error can not be detected in the formal verification of the specification; since
the pre-condition is too strong, it fulfills the proof obligations. It seems that this error
results from a rework of the specification where the original type of od, i.e. integer, was
changed to natural.

Refinement support. Execution traces of the prototypes corresponding to abstract and
concrete specifications have been compared in section 3. This provides clues on the
correctness of the refinements. Provided that the prototyping activity is fast and cheap,
it becomes part of a Refine-Prototype-Proof process. In this process, proof activities are
only undertaken when the developer is confident in the correctness of his refinement.

Data refinement has received less attention here than operation refinement. One way to
support the refinement of data structures is to synthesize executable code for the retrieve
function (here, a mask on the ebal field). At animation time, this function is used to
extract the abstract information from its concrete representation.

Tests. A record of the execution traces of the prototype may provide raw material for
the definition of test scenarios for the final product.

The rigorous exploitation of these facilities necessitates methodological guidelines and
support that go beyond the scope of this work.

www.manaraa.com

48 LEDRU

4.2. Related work

Several attempts to prototype VDM specifications are reported in the computing literature
[10] [9] [13]. ENCOMPASS [23] goes beyond prototyping to support operation decom­
position, using tests and formal verification. Most of these attempts propose a translation
process from a restricted form of VDM to languages close to LISP or Prolog. The re­
strictions on the language may affect the data structures supported or the logic of pre-
and post-conditions. Actually, this logic is close to first order predicate logic, which is
undecidable. Restricting it to Horn clauses is one way to make the language executable.

The ambition of KIDSA'̂ DM is to support the full VDM specification language. In partic­
ular, the pre- and post-conditions do not suffer any restriction and can not, in full generality,
be translated automatically into executable constructs. In KIDSA'̂ DM, this undecidability
problem is solved by the semi-automatic character of the program development mode. First,
the user may guide the search for an algorithm by the selection of an appropriate tactic.
Then, if KIDS does not include enough design knowledge about the problem to solve, the
user may try to add transformation rules to the system.

The IFAD toolbox [7] is currently the most mature tool to execute VDM specifications. It
is based on an executable subset of VDM, where implicit specifications in terms of pre- and
post-conditions must be associated with explicit executable code. Its scope is thus different
from the one of KIDSA^DM, which is based on the implicit style. Experiments with this
toolbox [19] have shown that it definitely helps detect errors in specifications.

The bank transfer case study does not use this explicit style, and therefore can not be
executed with this toolbox. It started from an off-the shelf specification that was not meant
to be prototyped. A translation of this specification into an explicit one would not be
difficult. But, as discussed in section 4.3, there is a definite risk to focus on executability
concerns at specification time. Nevertheless, it is fair to mention that, in this case study, the
translation of implicit specifications into code is rather straightforward. It would be easy
to extend the IFAD toolbox in order to support restricted forms of implicit specification.

4.3. Limits

About 100 small VDM specifications, mostly taken from [11], have been prototyped with
the tool. 80 to 90% of these have led to executable code. In order to increase this percentage,
more design knowledge must be added to KIDS (definition of new tactics or new transfor­
mation rales). Also, the KIDS user interface, the interactive character of the prototyping
process, and the poor support of VDM for modular specifications restrict the possibility to
scale-up [16].

Since these specifications were quite simple, none has revealed a problem of code ef­
ficiency. Nevertheless, some of the prototypes are based on a global search algorithm.
So, execution time and algorithmic complexity may become significant problems. These
problems also exist with the other prototyping approaches listed in section 4.2. In these
approaches, efficiency problems often lead to incorporate premature design decisions in
specifications. In the KIDSA^DM approach, efficiency concerns are handled during the
program synthesis phase where optimization tactics and simplifications performed by the

www.manaraa.com

SPECIFICATION AND ANIMATION OF A BANK TRANSFER USING KIDS/VDM 4 9

theorem prover help decrease algorithmic complexity. For example, in section 2, an op­
timization tactic has introduced variables c - l , c - 2 , c - 3 t o avoid computing these values
several times.

In section 2.3.2, the VDM animator has been presented and some of its limits were
mentioned. It is an attempt to ease the animation of the prototype by a user-friendly
interface. The effective use of this tool would require further extensions like:

• the systematic recording of the execution sequences with a facility to replay the sequence
of operations or to browse through the state history; this would be the first step of an
evolution towards a test environment;

• the possibility to execute in parallel a specification and its refinement in order to compare
their behaviours.

4.4. Contribution of Knowledge-Based tools

The prototyping facility is based on two tools which contribute to its success:

• REFINE brings in a programming language that supports the VDM data structures
and most operations on these structures. Experience with the KIDSA'̂ DM system on
about 100 specifications showed that it was close enough to VDM to provide a good
target language. The bank transfer case study showed that the overriding operator was
missing. But this was not a major problem since it could be easily programmed.

• KIDS brings in an environment where every step is controlled. This guarantees the
correspondence between the specification and its prototype. It also allows one to record
a development and to replay it afterwards.

KIDS encapsulates design knowledge to synthesize code from specification and to
further optimize code. Our experiments showed that good results could be reached in
the prototyping process with a very basic design tactic (spec-to-code). This is due to
the short semantical distance between VDM and REFINE and to the fact that many
VDM specifications are closer to code than intended.

Finally, KIDS provides theorem proving facilities that can be used to prove properties of
VDM specifications. Experiments have shown the feasibility of these proof activities,
but it is necessary to further tailor the theorem prover to the kind of proofs involved in
VDM specifications.

In sunomary, both KIDS and REFINE provide powerful and reusable tools to KIDSA'̂ DM.

Acknowledgments

D. Bert, RG. Larsen, and the anonymous reviewers of JASE and KBSE have improved
the quality of this paper by their comments. A. Finkelstein and M. Feather have provided
the initial statement of the problem. Doug Smith and Kestrel Institute have significantly

www.manaraa.com

50 LEDRU

contributed to this research by introducing me to KIDS and replying to my numerous
questions in the recent years. The KIDSA^DM research started at the Universite Cathohque
de Louvain, within the Leibniz project, and continued at the Faculte Polytechnique de Mons;
it is currently led at the Universite Joseph Fourier within the BQR Forsud project.

Notes

1. REFINE is a trademark of REASONING SYSTEMS Inc.

2. For clarity sake, Georges's account, wliicli remains unchanged, is not displayed in this trace.

References

1. Andrews, D., Bruun, H., Hansen, B., Larsen, R, Plat, N. etal. 1995, Information Technology—Programming
Languages, their environments and system software interfaces — Vienna Development Method-Specification
Language Part 1: Base language, ISO.

2. Barclays Bank PLC,. 1991, The Barclays code of business banking, Barclays Bank, Commercial Banking
Division.

3. Bicarregui, J. C , Fitzgerald, J. S., Lindsay, P. A., Moore, R. and Ritchie, B. 1994, Proof in VDM: A
Practitioner's Guide, FACIT, Springer-Verlag.

4. Bowen, J. and Stavridou, V. 1992, Safety-critical systems, formal methods and standards, Technical Report
PRG-TR-5-92, Oxford University Computing Laboratory.

5. Chung, L., Nixon, B. and Yu, E. 1995, Using non-functional requirements to systematically support change,
RE '95 - Second IEEE international symposium on Requirements Engineering.

6. Craigen, D., Gerhart, S. and Ralston, T. 1993, An international survey of industrial applications of formal
methods, Technical Report NISTGCR 93/626, U.S. National Institute of Standards and technology.

7. Elmstrom, R., Larsen, P G. and Lassen, R B. 1994, The IFAD VDM-SL toolbox : a practical approach to
formal specifications, ACM SIGPLAN Notices 29(9), 77-80.

8. Hayes, I. J. and Jones, C. B. 1989, Specifications are not (necessarily) executable, lEE, Software Engineering
Journal 4(6), 32Q-33S.

9. Hekmatpour, S. and Ince, D. 1988, Software prototyping, formal methods and VDM, Addison-Wesley.
10. Henderson, P. 1986, Functional programming, formal specification, and rapid prototyping, IEEE Transac­

tions on Software Engineering 12(2), 241-250.
11. Jones, C. B. 1990, Systematic Software Development Using VDM (SecondEdition), Prentice-Hall, London.
12. Jones, C , Jones, K., Lindsay, P. and Moore, R. 1991, Mural: A Formal Development Support System,

Springer-Verlag.
13. Kans, A. and Hayton, C. 1994, Using ABC to prototype VDM specifications, ACM SIGPLAN Notices

29(1), 27-37.
14. Larsen, P. G. 1994, Response to "the formal specification of safety requirements for storing explosives".

Formal Aspects of Computing 6(5), 565-568.
15. Ledru, Y. 1994, Proof-based development of specifications with KIDS/VDM, in M. Naftahn, T. Denvirand

M. Bertran (eds), FME'94: Industrial Benefit of Formal Methods, Vol. 873 of Lecture Notes in Computer
Science, Springer-Verlag, pp. 214-232.

16. Ledru, Y 1996, Using KIDS as a tool support for VDM, Proceedings of the 18th International Conference
on Software Engineering, IEEE Computer Society Press.

17. Ledru, Y. and Liegeois, M.-H. 1991, Integrating REFINE prototypes in a VDM development framework,
in B. MoUer (ed.). Proceedings of the IFIP TC2 Working conference on Constructing Programs from
Specifications, North-Holland, pp. 243-265.

18. Ledru, Y. and Liegeois, M.-H. 1992, Prototyping VDM specifications with KIDS, Proceedings of the 7th
Knowledge-Based Software Engineering Conference, IEEE Computer Society Press, pp. 50-59.

19. Mukherjee, P. 1995, Computer-aided validation of formal specifications, lEE, Software Engineering Journal
pp. 133-140.

www.manaraa.com

SPECIFICATION AND ANIMATION OF A BANK TRANSFER USING KIDS/VDM 51

20. Smith, D. 1990, KIDS: a semi-automatic program development system, IEEE Transactions on Software
Engineering — Special Issue on Formal Methods 16(9), 1024-1043.

21. Smith, D., Kotik, G. and Westfold, S. 1985, Research on Knowledge-Based Software Environments at
Kestrel Institute, IEEE Transactions on Software Engineering 11(11), 1278-1295.

22. Spivey, J. 1992, The Znotation - A Reference Manual (Second Edition), Prentice Hall.
23. Terwilliger, R. B. and Campbell, R. H. 1989, ENCOMPASS: An environment for the incremental develop­

ment of software, The Journal of Systems and Software 10, 41-53.

www.manaraa.com

Automated Software Engineering 4, 53-75 (1997)
© 1997 Kluwer Academic Publishers. Manufactured in The Netherlands.

Interactive Explanation of Software Systems
W. LEWIS JOHNSON johnson@isi.edu
ALIERDEM erdem@isi.edu
use/Information Sciences Institute & Computer Science Dept, 4676 Admiralty Way, Marina del Rey, CA 90292-
6695

Abstract. This paper describes an effort to provide automated support for the interactive inquiry and explanation
process that is at the heart of software understanding. A hypermedia tool called I - Doc allows software engineers
to post queries about a software system, and generates focused explanations in response. These explanations are
task oriented, i.e., they are sensitive to the software engineering task being performed by the user that led to the
query. Task orientation leads to more effective explanations, and is particularly helpful for understanding large
software systems. Empirical studies of inquiry episodes were conducted in order to investigate this claim: the kinds
of questions users ask, their relation to the user's task and level of expertise. The I-Doc tool is being developed to
embody these principles, employing knowledge-based techniques. The presentation mechanism employs World
Wide Web (WWW) technology, making it suitable for widespread use.

Keywords: software explanation, software understanding, hypertext, World Wide Web

1. Introduction and motivation

Software engineers, and software maintainers in particular, spend significant amounts of
time attempting to understand software artifacts (Corbi, 1990). These software understand­
ing activities have been characterized by Brooks (1983) and Soloway et al. (1988) as being
composed of inquiry episodes. According to Soloway et al. (1988), inquiry episodes in­
volve the following steps: read some code, ask a question about the code, conjecture an
answer, and search the documentation and code for confirmation of the conjecture. Because
of the important roles that conjecture and search play in the process, Selfridge has described
software understanding as a discovery process (Selfridge, 1990).

Search in software understanding is very error-prone; people do not always know where to
look for information to support their conjectures. In Soloway's studies the most successful
subjects systematically scanned code and documentation from beginning to end, to make
sure they found the information they required. This is clearly impractical for large systems.

The solution that Soloway and others advocate is to organize documentation to make
search easier. Two principal methods have been attempted. One is to link documentation,
so that the understander can easily get from the site in the documents where the question is
posed to the site where the answer can be found. Soloway uses this technique to document
delocalized plans, linking the various elements of the plan together. The other method is to
layer documentation, so that different types of information reside in different layers. For
example, Rajlich (Rajlich et al., 1994) organizes information into a problem domain layer,
an algorithm layer, and a representation layer. Understanders can then limit their reading
and searching to particular layers. The conjecture-and-search method of obtaining answers

www.manaraa.com

54 JOHNSON AND ERDEM

to questions is essentially unchanged in these approaches, but the search process is made
more efficient.

Of course there is another common technique for obtaining answers to inquiries about
software—to ask somebody who knows. There is no need for searching at all with this
method. Our objective is to develop a tool that approaches the ideal of having an expert
on hand to answer questions. Such a tool should be able to respond directly to the user's
inquiry with information that helps provide an answer.

Research in automating consultative dialogs has identified a number of important re­
quirements for explanation systems (Moore, 1995). First, they must, of course, have the
necessary knowledge to provide the desired answers. Second, they must provide answers
in a form that the questioner can understand and avoid concepts that the questioner is unfa­
miliar with. Third, they should take into account the goals of the questioner. The content
of the answer can depend upon what the user is trying to do with the information.

Principles similar to these are already the basis for the design of certain types of user
manuals, namely minimal manuals (Lazonder and Meij, 1993). Such manuals attempt to
anticipate the tasks that users might need to perform, and provide information to help achieve
them. Although advocates of minimal manuals claim that novice users are in particular need
of task oriented documentation, it is reasonable to hypothesize that software professionals
would benefit as well. Lakhotia (1993), for example, quotes a software developer who
says that what he would like in the way of a software understanding tool is "something
that helps me get the job done, fast". Unfortunately, the tasks of software professionals
in general are not precisely defined. User manuals can be oriented toward specific tasks,
such as composing a letter or generating a mailing list. Software engineering tasks such
as design or maintenance are much broader, and the influence of such tasks on software
understanding is unclear, although software understanding researchers such as Brooks have
conjectured that such influences exist (Brooks, 1983).

In order to develop tools that approach the ideal of an on-Hne software consultant, our
work has proceeded on two thrusts. First, we have examined the interactions that occur
during expert consultations, in order to determine what types of questions people ask and
what governs the answers the experts provide. We have been particularly interested in the
following.

• What kinds of information do people ask for?
• How does user task and expertise influence the question?
• What information about the questioner (e.g., task, level of expertise), determines the form

of the answer?
• To what extent is the information available from conventional documentation sources?

Second, we are using these results to revise and enhance the implementation of an on­
line documentation tool called Intelligent Documentation (I-Doc). An initial version of
I-Doc was built prior to the empirical study with task orientation in mind. The results of
the empirical study helped us in clarifying the relation between user tasks and questions,
and in building a taxonomy of question types.

Information provided by I - Doc is explicitly organized in the form of answers to common
questions. Like most expert consulting systems, and unfike typical on-line documentation.

www.manaraa.com

INTERACTIVE EXPLANATION 55

the system has an exphcit model of the user and his or her task. This enables the system
to select information that is likely to be useful, and present it in an appropriate form. The
objective is to increase the likelihood that the information provided answers the user's
question, and to reduce the amount of search and interpretation required. The presentation
medium being employed is dynamic hypertext, i.e., hypertext descriptions that are created
dynamically in response to user queries. Automated text generation techniques can make
hypertext a medium for human-computer dialog, with features similar to that of interactive
question answering systems. The hypertext descriptions are presented using commonly
available tools, namely World Wide Web (WWW) clients.

2. Empirical study

2.1. Motivation

In order to obtain a realistic picture of the software inquiry process, it is desirable to
focus on the task of understanding large, complex systems. Most investigations of soft­
ware understanding, such as Soloway's study of JPL (Soloway et al., 1988) or Rajlich's
study (Rajlich et al., 1994), concern themselves instead with small programs, of 500
lines or less. However, the task of understanding a small program is likely to be dif­
ferent from that of understanding a large program. For example, Soloway found in his
study that the people who did best in understanding software read the code linearly from
beginning to end; this approach becomes impractical as codes become larger. Unfortu­
nately, as the size of programs increases, so does the amount of time required to un­
derstand the software. This makes it difficult to collect data from large numbers of
subjects.

We therefore decided to examine a different source of data on software inquiries, namely
the messages posted to Usenet newsgroups on software-related topics. We were particularly
interested in the hierarchy of newsgroups under comp.lang, which contain discussions about
programming languages. The articles posted to comp.lang newsgroups include a wide range
of questions about programming problems and answers to them. The dialog between
the questioner and the advisor is clearly observable from these messages. The variety in
questioners' backgrounds, expertise and activities make these newsgroups good candidates
for studying the software inquiries.

We focused our attention on the comp.lang.tcl newsgroup, which contains discussions
about Tel and Tk programming languages. Tel is a simple textual language and a library
package. Its ease of use and simplicity makes it useful for writing shell scripts and prototyp­
ing applications. Tk is an extension of Tel and provides the programmer with an interface
to the XI1 windowing system. When these tools are used together, it is possible to de­
velop GUI applications quickly. The source code and the documentation for both systems
are available to the users. However, because of both the limitations of the documentation
and the frequent upgrades to these products, some users still rely on the newsgroup to
get answers to their questions.

Tel and Tk are fairly large in terms of their source code size. Tel version 7.4 has
25,902 lines of C code, 2,707 lines in the header files and 8659 lines of documentation. Tk

www.manaraa.com

56 JOHNSON AND ERDEM

version 4.0 has 86,782 lines of C code, 7,382 lines in the header files and 25,219 lines of
documentation.

Another advantage of studying Tcl/Tk newsgroup was the availability of the source code
and the documentation to the users. It was possible for the users to answer some of the
questions by looking at the source code, which is reasonably well documented and easy to
understand. In particular, the code developers made an effort to explain the purpose of each
procedure and data element, summarize key algorithms, explain the intent behind specific
statements within the code, and note where assumptions are being made about processing
elsewhere in the system. This resulted in some interesting messages in which users refer
to the source code or the documentation. It also gave us some data for investigating where
the users search an answer, in the source code or in the documentation, and under what
conditions.

2.2. Data analysis

1250 messages posted to the newsgroup between 2/17/95 and 4/22/95 were analyzed. The
data analysis method was similar to that used by Herbsleb and Kuwana (1993). Only
messages that asked questions about Tcl/Tk were considered. Messages asking irrelevant
questions (distribution sites, FAQ location etc.), product announcements, and opinions
were ignored. The message set included 249 questions, which were categorized along
multiple dimensions. Answers were noted, but were not explicitly categorized as part of
this particular investigation. ,

For each question, the questioner's level of expertise was estimated. In nearly all cases,
the expertise level was easily inferred. It was either stated explicitly in the message or
was easily guessed by looking at the contents of the message. If the questioner stated that
he just started learning Tcl/Tk or asked a very simple question that was covered in the
documentation, we classified him as a novice. If he had been using Tcl/Tk for more than a
year or asked complex questions that were not in the documentation, he was classified as
an expert. All others were classified as intermediates. Of the 249 questions, 55 was asked
by novices, 185 by intermediates and 9 by experts.

Next, the questioner's task was categorized. It was useful to characterize tasks at two
levels: the macrotask and microtask levels. A macrotask is an activity that someone performs
on the system as a whole, e.g., maintaining it. A microtask is a more local activity performed
on a specific system component or artifact, e.g., forking a process, configuring a widget, or
invoking the make utility.

Inferring the microtasks from the messages was easier than inferring the macrotasks.
The questioners usually indicated what they were trying to do. This particular study did not
attempt to categorize the types of microtasks, but did record the subject of the questions,
i.e., the component that was the focus of the microtask.

In attempting to classify the macrotasks, it was evident that it would not be possible to
come up with a mutually exclusive set of macrotask definitions that would not be open to
dispute. For example, what we might consider to be maintenance activity could be consid­
ered as programming activity by others. To minimize this problem, we classified the users
into three easily distinguishable categories, installers, users and programmers. We further

www.manaraa.com

INTERACTIVE EXPLANATION 57

divided the programmers into 4 different groups depending on the domain of the problem
they were trying to solve. For example, if the user asked a question about a Tk widget, then
we classified him as a GUI programmer.

This resulted in die following macrotask categorization:

• Installer. Users who are installing or upgrading Tcl/Tk
• User. Users of Tcl/Tk applications who focus not on the programming issues, but usage

problems, e.g.. Why can't I use enter in buttons!
• Integration programmer. Programmers who are trying to integrate Tcl/Tk with C by

calling Tcl/Tk functions from C or vice versa
• GUI programmer. Programmers who focus on graphical user interface issues
• Communication programmer. Programmers who develop applications that communicate

with other applications running on the same or a remote computer
• Other programmers: All other programmers including UNIX shell programmers

After the questioner's expertise level and task were determined, the type of question was
classified. Other researchers have tried to classify user questions before. For example,
Wright claimed that user's questions are either task oriented or symptom oriented (Wright,
1988). Hill and Miller studied the types of questions asked by users of an experimental
graphical statistics program (Hill and Miller, 1988) and they categorized the questions
as requests for plans to achieve task-specific goals; describe or identify system object;
verify action as proper; describe system capability etc. However, these researchers focused
mainly on questions from software users, whereas the questions in the Tcl/Tk data set
come primarily from programmers. As a result, the categorization scheme used here differs
slightly from those used in the above studies.

Questions were classified as goal oriented, symptom oriented, and system oriented.

• Goal oriented: These questions requested help to achieve task-specific goals and were
further categorized as follows:

— Plan request: Questions like How can I read a file into an array! asked for a plan
to achieve the goal.

— Goal satisfiability: An example question in this group was Is it possible to display
a picture on a button widget! These questions differed from the plan requests, since
the user was not sure whether the goal was achievable. However, usually the answers
to both types of questions included the plans to achieve the goal.

• Symptom oriented: When the users could not identify the source of a problem, they asked
these questions. An example was Tel installation fails with an error message. What am
I doing wrong!

• System oriented: These questions requested information for identification of system ob­
jects and functions. They consisted of:

— Motivational: The users tried to understand why the system functioned in a particular
way and how that behavior could be useful. An example was Why is the ability to bind
to the CreateNotify and DestroyNotify events not supported in Tk bind command!

www.manaraa.com

58 JOHNSON AND ERDEM

— Conceptual: These questions asked for descriptions of system objects and functions.
An example was What is an option menu!

— Explanatory: These questions requested explanations about how the system worked,
e.g., How does auto-path variable work?

In addition to these categorizations, we also noted whether the message contained any
examples and if they were general or specific descriptions. Code samples and error mes­
sages were classified as specific, the descriptions of the desired outcome with no specific
information were classified as general.

Finally we identified the target for each question in order to find out the relations between
the question type, the level of expertise and the target. As in Herbsleb and Kuwana's study
(1993), we defined target as the subject of the question.

2.3. Results and discussion

After all the messages were classified, the number of messages in each group were counted.
Table 1 summarizes the distribution of questions by macrotask, expertise and question types.

2.3.1. What kinds of information do people ask for? There were 3 major groups of ques­
tions in our classification: goal oriented, symptom oriented and system oriented. Among
these, goal oriented questions occurred most frequently. The users usually knew what they
wanted to achieve, but did not know how to accomplish it.

Symptom oriented questions were asked less often than the goal oriented ones, but
they still constituted almost one-fourth of all questions. The users lacked the necessary
knowledge to diagnose the problem in their code or the system's operation, and asked for this
missing information. The answerers usually knew the solution, because they experienced
a similar problem before and found the solution.

Table I. The distribution of messages by taslc, expertise and question type (N: Novice, I: Intermediate, E:
Expert).

Macrotasks

Installer

User

Integrator

GUI prog.

Comm. prog.

Other prog.

Total

Type total (%)

Section total

Goal oriented

Plan request

N I E

5 4

11 65

3

5 14

21 86

5

1

6

113(45%)

Goal

N I

2 2

2

5 34

2 5

9 43

E

1

1

2

54 (22%)

167 (67%)

Symptom

Symptom

N I E

7 2

1 6

4 25

2

5 7

17 42

59 (24%)

59 (24%)

Motivat.

N I E

2

5

2 5

7 (2%)

System oriented

Concept.

N I E

1

1 1

1

2 2

4 (2%)

23 (9%)

Explan.

N I E

1

1 3

1

3 3

4 7 1

12 (5%)

Task
total

9

7

19

161

7

46

249

www.manaraa.com

INTERACTIVE EXPLANATION 59

Finally, there were questions concerned with identifying what the system objects were,
how they worked and why they were necessary. The number of the system oriented questions
in Tcl/Tk newsgroup was small compared to the goal and the symptom oriented questions.
This was probably because of bias in the data. Newsgroup members may have been reluctant
to ask questions that should be answerable by examining available code and documentation.
Actually, the fact that system oriented questions occurred at all is an indication that available
documentation suffered from limitations. If this is true for carefully documented code such
as Tcl/Tk, it must be even more true for software in general.

The results of our study agree to some extent with the other researcher's results. In Hill
and Miller's study (1988) goal oriented questions were 70%, system oriented questions were
22% and problem oriented questions were 4% of the total questions. In our study, problem
oriented questions were more common (24%) probably due to the nature of the programming
activity, but goal oriented (67%) questions were asked as much. System oriented questions
had a higher percentage in their study, because the only available documentation was the
advisor's help.

An important observation was the amount of experience sharing in answering questions.
Usually, the answerer knew the solution as a result of his prior experience. For example,
someone from Germany asked how to display umlauts in entry widgets and not surprisingly
the answer also came from there. It seems possible to answer a significant portion of the
questions by storing and retrieving other users' experiences.

2.3.2. How does user task and expertise influence the question? The type of question
users ask is predictable to a certain extent if users' task and expertise level is known.
For example, installers were more likely to ask symptom oriented questions than others.
This might be due to the fact that most installers were new users and didn't know enough
to identify the problems. Besides, some of the installation problems were complex and
required extensive knowledge outside user domain, such as details of the UNIX operating
system, libraries etc. Another factor that possibly contributed to this behavior was the lack
of explanations in the installation instructions. Since the installers were simply following
the instructions they didn't have a good mental model of the installation process and when
it failed, it was hard to identify the source of the problem.

Task by itself was not the only determiner of the question type. Expertise level was also
important. Figure 1 shows the percentage distributions of question types by expertise level.

Motivational
4%

Explanatory
7%

MotlNatianal Satiny.
3% 23%

^°^'^'^ Intermediate

Figure 1. Distribution of question types for different expertise levels.

Expert

www.manaraa.com

60 JOHNSON AND ERDEM

It can be seen that more conceptual and motivational questions were asked by novices. As
users became more familiar with the system, they asked fewer questions and the questions
they did ask were more likely to be goal oriented. Symptom oriented questions became less
frequent, as programmers developed an experience base of common symptoms and their
causes. System oriented questions decreased from 15% for novices to 8% for intermediates.
Questioner's knowledge about system objects at this level was high enough to reduce the
number of conceptual and motivational questions, but was not high enough to eliminate
explanatory questions. For experts, system oriented questions increased to 11 % mainly
because of the explanatory questions.

Although experts ask fewer questions, these ones that they do ask are more complex and
harder to answer. For example, a novice plan request like How can I display bitmaps on
a button! is easier to answer than an expert plan request like How can I scroll the text in
a widget during test selection! We haven't attempted to measure the complexity of the
targets, but target attributes like complexity and generality affect both presentation (e.g.,
present simple concepts before complex ones) and content (e.g., do not present complex
concepts to novice users) of the documentation.

2.3.3. What information about the questioner determines the form of the answer? This
particular study did not classify and analyze the form of the answers in detail. However,
from perusing the answers that were sent in response to the posed questions, it was evident
that task and expertise level were inferable from the message and this information affected
the form of the answer. Frequently novice users only got the pointers to the documentation
whereas experts usually received more detailed and explanatory answers.

The way the questions were asked, possibly because of individual differences, also af­
fected the form of the answer. Some users requested brief information whereas some others
wanted detailed answers with explanations. For example in the following message, the user
was not only interested in identifying the problem but also wanted to learn how open worked.

/ am trying to talk to a process by opening a pipe as described in the
Tel book (setf [open —prog r+])
prog, however, wants its input in stdin only—so it exits complaining...
What does really happen in "open"! Is there any way out of this"?

Soloway et al. found that users employed two macrostrategies for finding the answer
to their questions, systematic and as-needed (Soloway et al., 1988). Systematic strategy
users read all the documentation whereas as-needed strategy users sought information only
when necessary. Research in behavioral theory supports this observation. It is known that
when faced with a problem some people use just enough information to arrive at a feasible
solution (satisficers) whereas some others gather as much information as they can (maxi-
mizers) (Hunsaker et al., 1994). Individual differences has to be taken into consideration in
answering the users' questions.

2.3.4. To what extent is the information available from conventional documentation
sources? Half of the questions could have been answered by consulting the documenta­
tion or source code. However, Td/Tk experience and expertise was necessary to answer the

www.manaraa.com

INTERACTIVE EXPLANATION 61

Other half. A simple looking question like Is it possible to do multitasking in Tell required
extensive Tel and programming knowledge.

Searching the source code was easier when the program code that implemented the
answer was localized. The answer to the question How can I put an image on a buttonl
was easier to find than Is it possible to deactivate the toplevel window until another event!,
because Tk code was structured around graphical objects. The documentation, which was
structured similarly, was probably easy to maintain, but it didn't make finding the answer
to die second question easier. Documentation that supported delocalized plans could have
shortened the time to find the answer (Soloway et al., 1988).

The information that needs to be delocalized depends on the task and in practice sepa­
rate documentation is required for different tasks, e.g., programmer's manual, maintenance
manual etc. There is considerable information overlap between these manuals, and dupli­
cating the same information in different documents introduces the maintainability problem.
A change in the system behavior requires updates to many documents. Storing the infor­
mation in an online question answering system's repository and generating the documents
on demand solves both the maintainability and the delocalization problems.

It was impossible to find the answers to certain questions in the documentation, since
they were either asking for high level plans or instances of a general plan. A question like
How can I split canvas into pages and print! asked for a high level plan. The answer to
the question How can I pass an array from Tel to C? could be answered easily if one knows
that Tel is a string based language and it is possible to pass these strings to C and do data
conversion. Once a person learns this general plan, it is simple to answer questions like
How can I pass < data - type >from Tel to C? Although it might not be feasible to include
the answer to each data-type specific question in static documentation, it is easy to generate
the answers to these questions in a dynamic documentation environment.

2.3.5. Importance of examples. Examples had an important role in both questioners' and
answerers' messages. Table 2 summarizes the number of examples seen in the messages
by question type.

Table 2. Distributionof examples by question type.

Question type

Plan request

Goal satisfiable

Symptom oriented

Motivational

Conceptual

Explanatory

Goal oriented

Symptom oriented

System oriented

Total

No example

54 (48%)

27 (50%)

11(19%)

2 (29%)

3 (75%)

4 (33%)

81 (49%)

11 (19%)

9 (39%)

101 (41%)

General description

22 (19%)

16 (30%)

3 (5%)

4 (57%)

2(17%)

38 (23%)

3 (5%)

6 (26%)

47 (19%)

Specific description

37 (33%)

11(20%)

45 (76%)

1 (14%)

1 (25%)

6 (50%)

48 (28%)

45 (76%)

8 (35%)

101 (40%)

www.manaraa.com

62 JOHNSON AND ERDEM

Examples were most frequently seen in the symptom oriented questions (81%). It was
the easiest and most descriptive way of describing the error and presenting the solution.
Similarly, 51 % of the goal oriented questions included examples. However, the descriptions
in the goal oriented questions were more general than the symptom oriented ones. Especially
complex tasks were specified with general descriptions rather than specifics.

2.4. Limitations of the data

Although the Tel newsgroup is a rich source of data about software inquiry episodes, the
data collected is subject to some biases. Since most of the users in the newsgroup were
programmers, the numbers of questions for different software engineering tasks were not
equal. For example, there were no questions on software design activities, although there
were some questions about design rationales. None of the posted questions were from the
developers and maintainers of the Tcl/Tk system itself.

These limitations would be more serious if the objectives of the study were solely to
observe and measure software inquiry behavior. However, the main objective here was to
identify important question types, question topics, contextual factors, and answer content
that might otherwise be overlooked. This objective was most definitely accomplished. But
just because certain types of questions did not occur in large numbers in this sample set does
not imply that they are insignificant. For example, questions relating to design rationale were
not very common in this sample set, but there are solid independent grounds for supposing
that design rationales are important things to document and explain.

The Internet provides other sources of software inquiry data which may provide relevant
information. For example, there are many developer newsgroups where participants discuss
bugs and propose new system features. We are beginning to examine some of these other
data sets, to see if they provide further insights into how to design a system such as l-Doc.

2.5. Implications forT-Doc

The above study, along with previously articulated principles of good documentation
(Mayhew, 1992), suggest a number of implications for the design of I-Doc. Some of
these are already reflected in the current version of the system, others are the subject of
current development.

1. Organize around the users' tasks and goals. The study shows that programmers' ques­
tions are predominantly goal oriented, just as novice users' questions are. This contrasts
strongly with conventional system documentation, which is system oriented. I-Doc
uses tasks and goals to organize presentations in the following ways. Tasks are repre­
sented explicitly at the macrotask level, and support for microtasks is being added as
well. I-Doc's knowledge base can be extended by users, so as new tasks are identified
they can be incorporated into the knowledge base. I -Doc's knowledge base thus grows
along with the experience base of the users.

Organizing the knowledge base around user goals poses challenges from a knowl­
edge acquisition perspective. Conventional software development processes are oriented

www.manaraa.com

INTERACTIVE EXPLANATION 63

toward codifying properties of systems (e.g., requirements, design structures). They do
not place much emphasis on describing how to perform particular software engineering
tasks such as maintenance on those system. However, if code is well organized there
is often a clear correspondence between user goals and system functions. For example,
the user task of putting an image on a button may correspond to a particular procedure
that paints images on buttons. I-Doc's knowledge base represents system functions
and their mappings to domain concepts, in order to make it easier to map user goals onto
system functions. It also represents intermediate design abstractions such as plans, so
that delocalized plans can be mapped onto user goals as well.

2. Focus presentation according to user task, especially for general questions. Prior to
performing the above study, we hypothesized that the same question might be answered
in different ways, depending upon how the questioner described his or her task. The
observed data did not strongly support this conjecture: if the questioner asked a specific
question, it elicited a specific response, and there was relatively little scope for varying the
response according to the user's task context. However, this leaves open the question of
how user models might influence responses to general or imprecise questions. Questions
that are input to information management systems such as I-Doc are often fragmentary
and imprecise. The user may enter the name of a system function and ask for a description,
without stating precisely what he or she wants to know about the system function.
Requiring more precise questions imposes greater demands on the user to formulate the
queries, and on the system to interpret the queries. Knowledge of user task enables
I-Doc to restrict the information that it provides in response to imprecise queries, to
avoid inundating the user with irrelevant information.

3. Make presentations sensitive to user's expertise. Explanations to novices tend to be
briefer, and avoid making reference to other concepts that may be unfamiliar to the
questioner. Although I-Doc explicitly models the user's expertise level, it does not yet
make much use of this information when generating explanatory texts. However, the
system has been designed specifically to take such user models into account. I-Doc
incorporates a natural language generator for constructing phrases. The NL genera­
tor gives the system flexibility to express utterances in different ways, and sensitivity
to user expertise is a key area where such flexibility is critical. Without this require­
ment, a simple template completion scheme for phrase generation would most likely
suffice.

4. Represent a wide range of concepts, and mappings between them. This point has al­
ready been discussed in the context of mapping user goals onto code. Other mappings
that were found to be important were relations between domain concepts and code. In
Tcl/Tk these problems primarily among GUI developers who wanted to understand how
to map concepts from the domain of user interfaces onto system concepts. We have
found the problem to be even more acute in application software targeted to particular
domains. In order to meet these requirements, it was necessary to provide l-Doc with an
extensible representation scheme. We are still working on expanding the range of types
of knowledge represented in l-Doc so that it corresponds more closely to the range of
concerns observed in the empirical data, e.g., by including test cases, experience "war
stories", etc.

www.manaraa.com

64 JOHNSON AND ERDEM

3. I - Do c system architecture

We will now turn from discussion of the empirical studies that motivate I-Doc to the archi­
tecture of the system itself. The system has four major components: a software repository,
a documentation repository. Common Gateway Interface scripts, and a viewer. The soft­
ware repository contains software artifacts, and provides the information extracted from
these artifacts. It responds to requests from both the CGI scripts and the documentation
repository and returns the information required to answer the user's query. The documen­
tation repository is a simple frame based knowledge base which is used to, store two types
of data. The first type is called annotations and contains the textual descriptions entered by
the user for the software artifacts and for the user defined objects. The second type of data
is the presentation methods that produce the documentation. These are included as part of
the I-Doc system, can be extended by users and system administrators as needed. The
CGI scripts use the presentation methods for retrieving information from the software and
annotations repositories, and combines them to compose an HTML document which can
then be viewed with a WWW client.

The viewer also accepts user queries and passes them to CGI scripts. Currently this is
accomplished in two different ways. First I-Doc shows the user a list of hypertext links,
each of which represents a different query likely to be asked at that point. The user then
selects a link from the list. For example, one of the links might be labeled with the string
"What are the platform dependencies?". By clicking on this link the user is able to obtain
an answer to this question. The second way of entering a user query is by clicking on the
"Query" button. The user is then presented with a text input field and can enter a question
that is understandable by I-Doc. For example, when "What are the components of X?"
is entered, I-Doc will first query the annotations and software repositories to resolve the
name X. When it finds out what X is, it'll list the components of X to the user.

Figure 2 shows how the components described above organized and implemented. The
software repository is currently built primarily on top of Software Refinery^^. The program
analysis tools lex and yacc are also employed to supply I-Doc with information about
software. The repository consists primarily of annotated source code, together with pointers
to other available documents. Representatives of other types of objects besides source code
are also included. The system is currently designed to process Ada code, although some
support is also being developed for other languages. Annotated source code was chosen
as the primary information source because it is mechanically analyzable and is usually
available for an implemented system. An interface process is used to transmit between the
repository and the rest of the I-Doc system.

The documentation repository contains the annotations and methods used for producing
the documentation. The current version is implemented in and built upon the Perl pro­
gramming language. The data is stored in an SGML like format. It can be entered and
modified by any text editor or using I-Doc's own editing capabilities. The information
is organized around documentation objects which correspond either to software artifacts
or other relevant concepts such as domain concepts, design abstractions, etc. Users can
create new attributes and methods for the documentation objects as desired. The repository
also has a simple inheritance capability which makes creating documentation templates

www.manaraa.com

INTERACTIVE EXPLANATION 65

Documentation Repository

1

Methods '< Annotations

t
SW Repository Interface

t
Software Repository

1

Code < Design Info

1 Web Server

f
X t
^ ^ 1 CGI Scripts

\

\

1 I

Web

Client

Web

Client

T
^ User DB ^ ^

Figure 2. I-Doc system architecture.

easy. Organizations using I-Doc on software projects thus can create templates matching
their own internal documentation standards, or can adjust I-Doc's tailored explanations to
meet project-specific needs. Inheritable presentation methods can be used for implementing
templates in I-Doc. Besides that, methods also provide extensibility to I-Doc by giving
the user the ability to write access routines to new information sources. For example, if a
company had a database of design records whose structure is not known apriori by I -Doc,
they can write an access method for retrieving information from the database and use the
design records in their documentation.

Presentation generation is built upon httpd, a common WWW server, httpd is usually
employed at Web sites to transmit files to remote users. However, one can also use Common
Gateway Interface of httpd to run programs that generate the information to be displayed,
rather than to access a file. We have implemented a number of CGI scripts to be executed in
this manner. The scripts access three information sources in order to generate presentations:
the documentation repository, the software repository, and a database of information about
each I-Doc user, httpd provides security and password protection to control access to the
information.

To access I -Doc, one can use any Web client, although the preferred client configuration
includes Netscape 2.0 and Java. The Web interface makes it easy for multiple members of
a software project to obtain information about a common system, and reduces the need for
special-purpose software. A demonstration version of the system is accessible via the Web
addresses at the beginning of the paper.

4. Examples

The following example screen images illustrate how I -Doc works. The system documented
here is Advanced Multi-Purpose Support Environment (AMPSE), a system developed by

www.manaraa.com

66 JOHNSON AND ERDEM

TRW in Ada for the U.S. Air Force. This particular example was constructed from the Ada
source code and corresponding design documents, which were annotated and cross-linked
by hand. Editing facilities have since been built which enable I-Doc users to create such
annotated knowledge bases themselves.

Each I - Do c user must provide some simple profile information: their role on the project
(e.g., application programmer, maintainer, etc.), their macrotask, and their level of famil­
iarity with the system. In this example, the user has selected Application Programmer as
the role, Interface to System as the task, and High as the level of familiarity. In other words,
the user has an understanding of what AMPSE does, and is building an application which
interface with it.

Figure 3 shows an overview of the system, from the designed perspective. The description
is a combination of dynamically generated structured text and dynamically constructed
hyperlinks. The objective is always to provide a manageable amount of information relevant
to the user's question. Two types of hyperlinks are shown: links for obtaining elaborations

fritraiip iiyimnlc DgrnniFnintinii I ut-urlcnird >ii •»

MMMMUB\E^\Mh
Advanced Multi Purpose Support Environment

Application Programmer Interface

An application programmer may invoke the following functions:

• REOModd Control Functioniii

Ftrogrammens may alio interface to Advanced Multi-PUrpoaie Support
Environment by accesning designated global data diements:

• REO Model data

Further Information

• What does Advanced Multi-Rirpose Support Hnvironmettt do?

• How iit Advanced Multi- Purpose Support Environment stmctured?

• WhiU arg Uw plstform dcpendenciis?

• Fwll dff cription of iyytmi

'j|iii«litlim*IIUIIII*ll**W>HMH*HIIIIIIIUIimillll*HI iitimHmiftmmmiiMiHiUMiinnmininiiniii«nHiiinii'iiinirtii'i'"tiwi«i****««i''

Figure 3. High-level description of the AMPSE system.

www.manaraa.com

INTERACTIVE EXPLANATION 67

on the information presented, and links for obtaining answers to other questions. An
example elaboration link is the link labeled "REO Model Control Function", which provides
information about procedures that external applications are expected to invoke. An example
question link is die one labeled "What are the platform dependencies?" When this hnk is
selected, available information about platform dependencies is provided. Such links are
needed in case information that the presentation generator filtered out is in fact of interest
to the user.

Figure 4 shows what results if the information is not filtered using the user model. All
attributes of the system are then shown, only some of which fit on the screen shown.

Descriptions can be similarly obtained for various objects and concepts associated with
a system. One may also view the actual source code using the hypertext interface, as shown
in figure 5. Declared symbols in the text appear as hypertext links; by traversing these links
one can obtain information about the corresponding symbols.

hrMnpti I'vntnii Dtfriinirntiitlvn* Ij^l IIMIHIIIIJIIIIIIR VIHW

HOBlHiHl

HHHHyEiaHliimlS
Advanced Multi Purpose Support Environment

Description

The AMPSE ajnstem is a support eivironmmt satisfying the Mission Oitical
Computer Resources (MCCR) requirements for testing embedded software as
specified in the Air Force Logistics Command (AFLC) Long-Range Han for
Embedded Computer System (ECS) Support. The AMPSB provides an
alternative to next-generation, weapon syst^n-specific test support
environments. The objective of the AMPSE design is to improve lo^stics
supportability of weapon system software by reducing cost and increasing
both capabiU^ and flexibili^ of the test support environment

Limitations

None

Components

• ..EEQ-feps!-!;

• REO INPUTS
• liS.ft„MQD.eL

Figure 4. A non-task-oriented view.

www.manaraa.com

68 JOHNSON AND ERDEM

IJl f«t >hiw All tlMimiMVk (l|il»in MwiliHV

I * . •Tt MtA. - • *« •»•__ p i 11 I
•mnB

II Jljisj;, J a i L „!aiK?„ »E&S« M»ris?.ts Sasfs ̂ .M™ ^SHJEE J^SIKL _fi6)B„

SUBPROGRAM-BODY REO_Initialize

grooedure REO_lnlt Is
eg in

if not UTL_KEW_DATA_FLA0.13_SET(GEN_SHRMBM.DyKA_L0AD) then

—Set timers for last run of failure update routine (Reoflr)
REo CLP .imim ••- D-D;
REO GLP .tlfflQH. : - O.D;
—Hard wire Dt or Delta Time to .02 CH4NGE WHEN DARTE IS IMPLEJ
REO CLP .cr :- 0.02;

—BlanK time data for last failure data set received
REO GLP .REOI'IM :- (others -> CHiRACTER'POS (' '));

end If;

end REO INII;

Figure 5. A hypertext view of program code.

5. Underlying mechanisms

The following is a brief description of the representations and inference mechanisms used
in the I-Doc software repository, and the presentation generation.

5.1. Software repository mechanisms

Conceptually, the software repository is simply a collection of objects, each with a set
of attributes and relationships with other objects. Some objects correspond to individual
program components, and are represented internally using Software Refinery's parse tree
representation. Some objects contain information from multiple program components. For
example, in Ada each package has a specification and a separate body. For presentation
purposes, however, the package may be treated as a single object, whose properties are
obtained from both the specification and the body. Other objects do not correspond to
any program component at all, in which case a separate frame representation is used. The

www.manaraa.com

INTERACTIVE EXPLANATION 69

repository manages this heterogeneous representation so that the presentation generator
need not be concerned with the internal representations employed.

Each link from a parse tree node to its immediate subtrees is accessible as an attribute of the
parse tree object, as is the link from the node to its parent. Each parse tree link that associates
named program objects is also treated as a specialization of an abstract component relation.
This provides a language-independent way for the I -Doc presentation system to access
program substructures. Definition-use relations, derived from the Software Refinery symbol
table, are also treated as attributes. Additionally, each object has a "source text" attribute,
which consists of program text in which each symbol reference has been annotated with
SGML markup tags, which indicate where the symbol definition can be found. This marked
up source text is used to generated hypertext versions of source code such as that shown in
figure 5.

The repository also performs automated processing on object attributes. Some attributes
are computed from more primitive attributes; some are defeasibly inherited from the at­
tributes of other objects. For example, the attributes of an Ada procedure body may be
derived from attributes of the corresponding procedure specification or from the package
specification containing it. This capability is similar to the relation derivation mechanisms
incorporated in the ARIES system (Johnson et al., 1992), although limited in that no pro­
vision exists as of yet for editing derived attributes.

5.2. Documentation repository

Documentation repository is a simple frame based knowledge base where attributes and
methods of software and user defined objects are stored. Data is stored in an SGML like
format. Figure 6 is an example documentation repository with 3 object definitions. Each
object definition is placed within <<OBJECT>> and <</OBJECT>> tags. The first
line after the <<OBJECT>> tag is the object key and consists of the concatenation of the
name of the system, object type and object name. For example, the second object entry
is AMPSE. P a c k a g e . Main which contains the attributes of the Main package of AMPSE
system. The last object AMPSE. U s e r . P r o c e s s is a user defined object and contains the
attributes of the AMPSE process model. "User defined objects" are objects which have no
corresponding artifact in the software repository. Such objects are used to represent the
wide range of concepts found in the empirical study to be relevant to software explanation:
architectural abstractions, domain concepts, etc.

A '-' stands for the default object at a given level. The first object in the figure AMPSE.
P a c k a g e . - contains the default attributes for all package objects. When an attribute of an
object needs to be resolved during program execution, I -Doc first tries to find whether there
is an explicit description of that object attribute. If not, it will use the default attributes for that
object type. If no default attributes for that object type are found, the defaults for the system
are inherited. This inheritance mechanism simplifies the documentation generation process,
since default attributes for objects can be provided. This feature makes defining documen­
tation templates easy and provides compact storage of the information. Although the docu­
mentation templates could be defined as user defined objects and called in the presentation
methods, without inheritance it is not possible to use a template for a class of objects.

www.manaraa.com

70 JOHNSON AND ERDEM

«OBJECT»

AMPSE.Package.

«PRESENTATION»

print "<CENTER><H2>Package $unit</H2></CENTER>"

print "<H3>Author</H3>";

print &get-package.author ($unit) ;

if ($annotationst$key."!USER!WHAT">) {

print "<H3>Description</H3>";

print $annotations{$keY."lUSERIWHAT"};

}else {

print "No description is available for this package<P>";

}

« /PRESENTATION»

«OBJECT»

«OBJECT»

AMPSE.Package.Main

« U S E R »

« W H A T »

The AMPSE system is a support environment satisfying the Mission Critical Computer

Resources (MCCR) requirements for testing embedded software as specified in the Air

Force Logistics Command (AFLC) Long-Range Plan for Embedded Computer System (ECS)

Support. The AMPSE provides an alternative to next-generation,

For more information, please check

 I-Doc homepage

«/WHAT»

«/USER»

«/OBJECT»

«OBJECT»

AMPSE.User.Process

«/OBJECT»

Figure 6. Simplified example of part of the AMPSE documentation repository.

Attributes themselves are also stored within tags. Users can define new objects and add
attributes to existing objects. Attributes contain strings which can be text, variables or Perl
programs. One of the attributes, PRESENTATION, has a special meaning and is used for
producing the documentation page for the object. Users can embed links to web documents,
call special access methods to external information sources and do anything possible to do
with Perl programming language in defining attributes. As an example, let's look at how
the documentation for the Main package is generated.

When the user requests documentation for the Main package, I-Doc first tries to find a
presentation attribute for AMPSE. Package .Main object. Since no presentation attribute
is specified for this particular object, the presentation attribute of AMPSE. Package. -
will be used. Evaluating the presentation attribute in Perl will yield part of the HTML

www.manaraa.com

INTERACTIVE EXPLANATION 71

output that will produce the documentation page on the Web viewer. The user can use
variables (e.g., $ u n i t is a system variable and refers to the current object name),object
attributes (e.g., $ a n n o t a t i o n s { $key." ! USER! WHAT"} refers to the WHAT attribute of
AMPSE. P a c k a g e . Main object, i.e., the string "The AMPSE system...") or a method (e.g.,
&get_package_author method will return the author's name given the package name).
The user can define new methods, or use existing ones. Task oriented documentation is
also generated via such special presentation methods.

Users are not required to know Perl or the structure of the documentation repository in
order to use i -Doc . I -Doc creates a default documentation repository for new projects
when they are defined. Users do not need to make any additions or changes to this initial
repository, if they are satisfied with the documentation. They need to learn Perl and the
structure of the documentation repository only when they want to tailor l -Doc to their
needs. We believe most users will need special methods to access external data sources like
design records, test reports etc. I -Doc is designed to be an extensible, open system and
gives the users the ability to tailor the system to their needs.

5.3. User database

I-Doc currently records for each user the following information:

• what system they are currently working on,
• their role in the system development project (e.g., user, maintainer, etc.),
• their current macrotask,
• some parameters indicating their degree of expertise, and
• their individual preferences regarding the form of the output.

Expertise is classified qualitatively as novice, intermediate, and expert, in each of several
topic categories; the implementation language of the system (e.g., Ada), the application
domain, and the implementation platform. Currently only one individual preference is
recorded: whether the user prefers brief explanations or detailed explanations.

The user database parameters are assigned to special variables within the presentation
scripts. Presentations can be customized for particular user characteristics by having the
presentation methods test the user parameters. At present the user parameters must be
set explicitly by the user via special forms, and remain fixed until the forms are explicitly
changed by the user. We have been considering two ways of reducing this burden on the
user. If the user is employing a software process support tool that has some model of the user
tasks, we would like to input this information directly from the process tool. This would
allow I -Doc to track user tasks more automatically. Secondly, requests for follow-on
explanations and elaborations could be used as evidence that the user model is inaccurate,
so that the model can be automatically changed.

5.4. CGI scripts

Presentations are generated by scripts written in the Perl language (Wall and Schwartz,
1991). Perl was chosen because it is a high-level language somewhat comparable to Lisp,

www.manaraa.com

72 JOHNSON AND ERDEM

<HEAD><TITLE>DYnamic Documentation: Task independent view</TITLE></HEAD>

<BODY BGC0L0R="#EEFFF8"#TEXT="#000000"#LINK="#CCOOOO"#VLINK="#000055">

<CENTER>

<a href="http://It.isi.edu/idoc-scripts/select-system/username=guest?

type=ModuleS;unit=__Main &version=0&id=0">

<iing src="http: / / I t . i s i . edu/button-system.gif ">

. . . HTML output for the rest of the button descriptions is deleted for brevity

<a href="http://lt.isi.edu/idoc-scripts/select-SYStem/username=guest?

type=Module&unit=__Main &version=Oid=0">System

. . . HTML output for the rest of the button tables is deleted for brevity

</CENTER>

<HR>

<CENTER><Hl>Advanced Multi Purpose Support Environinent</Hl></CENTER>

<H3>Description</H3>

The AMPSE system is a support environment satisfying the Mission

Critical Computer Resources (MCCR) requirements for testing embedded

software as specified in the Air Force Logistics Command (AFLC)

Long-Range plan for Embedded Computer System (ECS)

Support. The AMPSE provides in alternative to next-generation, weapon

system-specific test support environments. The objective of the AMPSE

design is to improve logistics supportability of weapon system

software by reducing cost and increasing both capability and

flexibility of the test support environment.

<H3>Limitations</H3>

None

<H3>Components</H3>

<a href="http://It.isi.edu/idoc-scripts/task-oriented/username=guest?

type=MODULE&unit=REO_Export&version=l&id=20"> REO_Export

<a href="http://It.isi.edu/idoc-scripts/task-oriented/username=guest?

type=MODULE&unit=RE0_0UTPUTS&version=l&id=21"> REO_OUTPUTS

<a href="http://It.isi.edu/idoc-scripts/task-oriented/username=guest?

type=MODULE&unit=REO_INPUTS&version=lS:id=22 "> REO_INPUTS

<a href="http://It.isi.edu/idoc-scripts/task-oriented/username=guest?

type=MODULE&unit=REO_MODELSiversion=l&id=23 "> REO_MODEL

<a href="http://It.isi.edu/idoc-scripts/task-oriented/username=guest?

type=PACKAGE-SPECIFICATION&unit=REO_Global_Data&version=l&id=0">

REO Global Data

<a href="http://It.isi.edu/idoc-scripts/task-oriented/username=guest?

tYpe=SUPERPROGRAM-BODY&unit=REO_Image&version=l&id=0"> REO Image^/a>

</BODY>

Figure 7. HTML output for non task oriented view example.

www.manaraa.com

INTERACTIVE EXPLANATION 73

has strong string manipulations facilities, but does not produce large binary files. The scripts
can be executed on demand by the h t t p d server, without delays for system initialization
as in Lisp.

Each script is supplied five parameters. The first one, username, identifies the user
making the request. The remaining parameters identify the object to be described. The pa­
rameters are embedded in the WWW addresses (URLs) for the hypertext links. For example
the URL for the REO_Export link in figure 4 contains the following script invocation:
" task-independent/username = guest? type = MODULE&unit = REO_Export

&version=l&id=12".
t a sk - independen t is the name of CGI script that produces task independent docu­

mentation. The parameters follow the CGI script name and are as follows: "guest" is the
name of the current user, module is the software object type and REO_Export is the name
of the object. The version and id parameters are values assigned by the software repository
to distinguish the object from others of the same name and type. Each script is responsible
for generating URLs for follow-up questions and associating them with hypertext links in
the generated page.

Presentation generation occurs in the following phases. First, the script retrieves the user
attributes from the user database. After that, the presentation method is resolved by using
the documentation repository. If the object name is not specified in the repository, then
the inheritance mechanism will be used. Although each object can possibly have its own
presentation attribute, most of the objects use one of the default presentation methods.
After the presentation method is found, it is executed to determine the content and the
format of the documentation. Depending upon the current values of user parameters,
the presentation method may invoke additional task-dependent and/or expertise-dependent
presentation methods for fieshing out the presentation details.

The presentation methods query the software and the annotations repository for this
information. For example, in figure 4 the description comes from the annotations repository
and the component information is retrieved from the software repository. The description
is formatted as a text block whereas the components are formatted as a list of items. The
methods also convert the information into HyperText Markup Language (HTML) which
can then be transmitted and viewed by a WWW client. Figure 7 shows the HTML output
from the CGI script used to generate the text shown in figure 4; it contains several examples
of l-Doc invocations embedded in hypertext links.

6. Extensions and future work

Since the repository mechanisms is I-Doc can be readily extended by defining new object
categories and attributes, there are no fundamental limitations in the kinds of information
content that can be captured. Likewise, there are no limitations to the kinds of explanations
that can be generated. However, the amount of effort required to apply I-Doc to any given
software system can vary considerably. We are currently extending the system in order to
reduce the amount of effort required.

In order for l-Doc to explain software effectively, several kinds of information are
required: information about the problem domain, requirements and implementation

www.manaraa.com

74 JOHNSON AND ERDEM

constraints, architecture and design structures, code structures, examples and test cases,
etc. Knowledge acquisition is thus a serious issue, especially for legacy systems where
relevant information sources may be unavailable or out of date.

The knowledge acquistion problem is addressed in part by interfacing to analysis tools that
are able to supply the necessary information. Code analysis tools are especially relevant in
this regard. Publically available tools such as Bison are currently being employed to extend
the set of languages that I-Doc can support. We are also evaluating other code analysis
tools to determine how they might be interfaced to I-Doc.

Domain and requirements information typically must be obtained from informal textual
documents. I-Doc has therefore been extended to with an analyzer for extracting relevant
concepts in textual documents. The analyzer sorts through the text looking for recurring
words and phrases. It presents the list of phrases to the I-Doc user. The user can then
select meaningful phrases from the list. I-Doc then automatically creates objects in the
documentation repository corresponding to the selected phrases, and links them to their
occurrences in the original document. We plan to create additional analyzers for specific
types of structured documents such as requirements documents.

In order to make most effective use of the acquired information, it is important to be
able to organize concepts into hierarchies, and to define new concepts in terms of other
concepts. The LOOM knowledge representation system is being introduced into l-Doc
to help achieve these purposes. LOOM can also be used to define patterns which can be
matched against the software repository. This provides a limited code analysis capability
that can be used directly within I-Doc, and reduces the need to invoke external analysis
tools.

Additional extensions to I-Doc are underway, or are planned for the near future. For
example, we have incorporated Elhadad's FUG natural language generator (McKeown and
Elhadad, 1991), and are working to make more extensive use of this generator in producing
explanations. Automated word selection, focus and text organization capabilities, which
require the use of a text generator, are important in tailoring the documentation to the user.

We had made a start at incorporating dynamically generated diagrams into l-Doc. A
Java applet has been developed for drawing decomposition diagrams based on high-level
descriptions including lists of nodes and edges. Future work will make use of this and
similar capabilities to generate tailored diagrams emphasizing aspects of the system of
interest to the user. Ultimately it will be possible to integrate diagrams and text in order to
explain software more effectively.

Meanwhile further empirical studies of software inquiries will be conducted. We need to
understand the relation between the user questions and task better. However, it is not easy
to capture this relation for all tasks. That's why we are considering building the analysis
process itself into I-Doc. Once we define methods to answer the basic user questions, it
won't be hard to get feedback from the user and tailor the documentation further. Besides,
the user can define new tasks and by analyzing his question pattern for those tasks, an
association between the task and the question types can be made.

Finally, examples are very important in understanding the questions and presenting the
answers. We are planning to study the examples further and try to generate situation specific
examples in the documentation.

www.manaraa.com

INTERACTIVE EXPLANATION 75

7. Conclusion

This paper has described efforts to analyze the inquiry process that is central to software un­
derstanding, and to build a tool which provides automated support for this inquiry process.
Software understanding thus becomes less search oriented, and more like a question-answer
dialog.

The components of the system are currently undergoing trial evaluation. Groups outside
of USC/ISI have expressed interest in using i-Doc for their own projects, and plans are in
place for providing them with the system for their own use. Results from these evaluations
should be available by the time this paper goes to press.

Acknowledgments

1-Doc project members Rogelio Adobbati and Amy Biermann contributed to the system
functionality described in this paper. The authors wish to thank Wright Laboratory for
providing the software examples used in this paper. This work is sponsored by the Advanced
Research Projects Agency and administered by Wright Laboratory, Air Force Material
Command, under Contract No. F33615-91-1-1402.

References

Brooks, R. 1983. Towards a theory of the comprehension of computer programs. International Journal of Man-
Machine Studies, 18:543-554.

Corbi, T.A. 1990. Program understanding: Challenge for the 1990s. IBM Systems Journal, 28(2):294-306.
Herbsleb, J.D. and Kuwana, E. 1993. Preserving knowledge in design projects: What designers need to know. In

INTERCHr93.
Hill, W.C. and Miller, J.R. 1988. Justified advice; A semi-naturalistic study of advisory strategies. In CHI'88.

ACM.
Hunsaker, PL., Coffey, R.E., and Cook, C.W. 1994. Management and Organizational Behavior. Austen Press.
Johnson, W.L., Feather, M.S., and Harris, D.R. 1992. Representation and presentation of requirements knowledge.

lEEETrans. on Software Engineering, 18(10):853-869.
Lakhotia, A. 1993. Understanding someone else's code: Analysis of experiences. Journal of Systems Software,

2:93-100.
Lazonder, A.W. andvanderMeij, J. 1993. The minimal manual: Is less really more? Int. J Man-Machine Studies,

39:729-752.
Mayhew, D. 1992. Principles & Guidelines in Software User Interface Design. Prentice Hall.
McKeown, K.R. and Elhadad, M. 1991. A Contractive Evaluation of Functional Unification Grammar for Surface

Language Generation: A Case Study in the Choice of Connectives, Kluwer Academic Publishers, Norwell,
MA, pp. 351-392.

Moore, J.D. 1995. Participating in Explanatory Dialogues. MIT Press, Cambridge, MA.
Rajlich, v., Doran, J., and Gudla, R.T.S. 1994. Layered explanation of software: A methodology for program

comprehension. In Proceedings of the Workshop on Program Comprehension.
Selfridge, P.G. 1990. Integrating code knowledge with a software information system. In Proceedings of the 5th

Annual Knowledge-Based Software Assistant Conference, Syracuse, NY, pp. 183-195.
Soloway, E., Pinto, J., Letovsky, S.I., Littman, D., and Lampert, R. 1988. Designing documentation to compensate

for delocalized plans. Communications of the ACM, 31(11).
Wall, L. and Schwartz, R.L. 1991. Programming perl. O'Reilly & Associates, Sebastopol, CA.
Wright, P. 1988. Issue of content and presentation in document design. In M. Helander, editor. Handbook of

Human-Computer Interaction, Elsevier Science Publishers B.V. (North Holland), Chap. 28, pp. 629-652.

www.manaraa.com

Automated Software Engineering, 4, 77-106 (1997)
© 1997 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Test Case Generation as an AI Planning Problem
ADELE E. HOWE howe@cs.colostale.edu

ANNELIESE VON MAYRHAUSER, avm@cs.colostate.edu
Computer Science Department, Colorado State University, Fort Collins, CO 80523

RICHARD T. MRAZ mraz@cs.usafa.af.rail
HQ USAFA/DFCS, 2354 Fairchild Hall, Suite 6K41, U.S. Air Force Academy, CO 80840

Abstract. While Artificial Intelligence techniques have been applied to a variety of software engineering appli­
cations, the area of automated software testing remains largely unexplored. Yet, test cases for certain types of
systems (e.g., those with command language interfaces and transaction based systems) are similar to plans. We
have exploited this similarity by constructing an automated test case generator with an AI planning system at its
core. We compared the functionahty and output of two systems, one based on Software Engineering techniques
and the other on planning, for a real application: the StorageTek robot tape library command language. From
this, we showed that AI planning is a viable technique for test case generation and that the two approaches are
complementary in their capabilities.

Keywords: System testing, AI planning, blackbox testing

1. Automated Test Case Generation

Testing consumes a large amount of time and effort in software development. Although
critical for ensuring reliability and satisfaction, much of the process is tedious: constructing
data sets and/or sequences of commands to probe for faults. Some of the test cases will
uncover faults, but one expects that most will not. A variety of approaches have been put
forth for automated test generation in Software Engineering (SE) (see section 2).

Another approach is to acknowledge a similarity between some types of test cases (i.e.,
sequences of commands for software with command language interfaces) and plans in
Artificial Intelligence (AI). Both are sequences of commands to achieve some goal; both
need to conform to syntactic requirements of the commands and the semantic interactions
between commands. Considerable research in AI planning has addressed subgoal and
operator interactions; thus, the mechanisms of planning seem ideally suited to test case
generation. In this paper, we explore the similarities between test case and plan generation,
propose another approach, as implemented in a prototype, to automated test case generation
using an AI planner and compare the new approach to an existing SE approach.

We selected the SE approach for comparison with two criteria in mind: First, the approach
should be applicable to system testing and represent knowledge about the application at
the system level. Second, the generation method must have been successful in practice as
evidenced by at least a field study. Although our prototype might be small and limited in
capabilities, testing it against a real application is crucial to heading off concerns about AI
only being applicable to "toy problems".

www.manaraa.com

78 HOWE. VON MAYRHAUSER AND MRAZ

These two criteria directed us to select Application Domain Based Testing (ADBT)
(von Mayrhauser et al., 1994c, von Mayrhauser et al., 1994d) and its test generation tool
Sleuth. They support system testing of applications by building a model of the application
domain which is used in the associated tool Sleuth to customize a test generation engine.
Test generation is black box and is for user interfaces represented by a command language,
or for transaction or request based systems. These characteristics fulfill our first selection
criterion.

Application Domain Based Testing also fulfills the second criterion. Storage Technology
Corp.has doneafield study on the test generationmethod'susefulness(Figliulo et al., 1996).
An experienced tester tested two major product releases, one with and one without using
Sleuth over a full 12 week test cycle. The amount of new code and the development process
were comparable. The test cycle without Sleuth uncovered 38 incidents, using Sleuth pro­
duced 135 incidents. Further, the post-release incident rate was 30% lower for the version
tested with Sleuth.

2. Background on Testing

For systems with a command language interface, system tests consist of sequences of
commands to test the system for correct behavior. Similarly, transaction based or request
oriented systems can be tested by generating transactions or requests. Traditionally, test
automation for both command language and transaction based systems is based on a variety
of grammars or state machine representations.

Automated test generation for systems with a command language interface represents each
command using a grammar, generates commands from the grammar, and runs the list of com­
mands as the test case (for early work see (Purdom, 1972, Bauer and Finger, 1979)). When
using grammars for test case generation, we also need to address command language seman­
tics (Bazzichi and Spadafora, 1982), (Celentano et al., 1980), (Duncanc and Hutchison,
1981), (Ince, 1987).
(Duncan and Hutchison, 1981), (von Mayrhauser and Crawford-Hines, 1993) used attribute
grammars for test case generation. The syntax and semantics of the command language
were encoded as grammar productions. Test case generation is a single stage algorithm.
This encoding poses difficulties (von Mayrhauser et al., 1994c); not the least of which is
that for the average system tester these grammars are difficult to write and maintain and that
the generation process does not follow the test engineers' thought processes, particularly
in terms of testing goals and refinement of these goals at successive levels of abstraction.

Transaction based systems and state transition aspects of some other systems have been
tested using state machine representations (Chow, 1977, Fujiwara et al., 1991). State ma­
chine representations work well for generating sensible sequences of command types, but
become cumbersome for generation of both sequencing as well as command details of
systems with large and intricate command languages.

Automatic generation, whether based on grammars or state machines, requires making
choices during the traversal of the representations. The choices are due to ambiguities as
well as the purposeful inclusion of options in the representation. Choice is directed by
incorporating selection rules of various types. (Purdom, 1972) integrates "coverage rules"

www.manaraa.com

TEST CASE GENERATION AS AN AI PLANNING PROBLEM 7 9

for grammar productions to reduce choice, while Maurer (Maurer, 1990) uses probabilistic
context free grammars that are enhanced by selection rules including permutations, combi­
nations, dynamic probabilities, and Poisson distribution. Thus, value selection is based on
making choices relating to the representation of the command language or state machine.

Alternatively, one can argue that choices should be made depending on the functional
characteristics of the system. Functional testing according to (Myers, 1979) uses heuristic
criteria related to the requirements. (Goodenough and Gerhart, 1975) suggest partitioning
the input domain into equivalence classes and selecting test data from each class. Category-
partition testing (Ostrand and Balcer, 1988) accomplishes this by analyzing the specifica­
tion, identifying separately testable functional units, categorizing each function's input, and
finally partitioning categories into equivalence classes. (Richardson et al,, 1989) consid­
ers these approaches manual, leaving test case selection completely to the tester through
document reading activities. Further, partition-testing as a testing criterion does not guaran­
tee that tests will actually uncover faults (Hamlet and Taylor, 1990, Tsoulakas et al., 1993,
Weyuker, 1991). From a practical standpoint, a better approach is to combine different test
generation methods with a variety of testing criteria. Examples are to combine exhaus­
tive generation of some commands or parameter values with probabilistic or combinatorial
criteria for others, which requires flexible command generation methods.

(von Mayrhauser and Crawford-Hines, 1993, von Mayrhauser et al., 1994c),
(vonMayrhauser et al., 1994d) developed a test generation method, Application Domain
Based Testing, that addresses the need of software testers for a tool that supports their
thought processes. Test generation addresses three levels of abstraction: the process level
(i.e., how the target software commands are put together into scripts to achieve high level
tasks), the command level (i.e., which specific commands are included in the scripts), and
the parameter level (i.e., particular parameter values used in command templates). Each
level has its own generation rules that represent syntax and semantics at that level. Definition
of content of rules at each level is the result of a specialized application domain analysis.
The resulting domain model forms the basis for test case generation.

So far, few approaches to software testing use artificial intelligence methods. (Deason
et al., 1991) uses a rule-based system to test programs. The rules reflect white box criteria
and use information about control flow and data flow of the code. To apply this method to sys­
tem testing would require an entirely new set of rules. (Chilenski and Newcomb, 1994)usea
resolution-refutation theorem prover to determine structural test coverage and coverage fea­
sibility. Again, this aids white box testing, rather than system testing. (Zeil and Wild, 1993)
describe a method for refining test case descriptions into actual test cases by imposing ad­
ditional constraints and using a knowledge base to describe entities, their refinements, and
relationships between them. This is considered useful for test criteria that yield a set of test
case descriptors which require further processing before usable test data can be achieved.

(Anderson et al., 1995) use neural networks as classifiers to predict which test cases are
likely to reveal faults. Automated test case generation can easily generate tens of thousands
of tests, particularly when random or grammar based methods are chosen. Running them
takes time. After a subset has been run, results indicate whether or not the test revealed a
fault. The neural net is trained on test case measurements as inputs and test results (severity
of failure) as output. This is then used to filter out test cases that are not likely to find

www.manaraa.com

80 HOWE. VON MAYRHAUSER AND MRAZ

problems. While the study is preliminary, the results are very encouraging for guiding and
focusing testing, making it more efficient and effective.

3. AI Planning for Testing

Test cases are sequences of operations where the order matters. Operations may be executed
only in particular contexts or in particular orders. Thus, coordinating the inclusion of oper­
ations and their interactions is a source of complexity in test case generation. Fortunately,
representing and reconciling operation interactions is the purpose of most AI planning
systems.

Roughly speaking, to generate a plan, a planning system is given: (1) a description of
the operators, (2) an initial state of the world and (3) a goal state. Operator descriptions
have parameters (i.e., what objects are involved in the operator), preconditions (i.e., what
must be the case to use this operator) and effects (i.e., what happens to the system after the
operator is executed).

Many classical or deliberative planning systems generate a plan by in effect proving that
a sequence of actions will transform the initial state into the goal state. Planning works as
follows: pick a goal to achieve, find an operator whose effects include the goal, add the
preconditions of the operator to the list of goals to achieve and repeat the three steps until
no goals remain unresolved or all unresolved goals are satisfied by the initial state.

What makes planning an attractive paradigm for software testing is the similarity of plans
to programs and its emphasis on goals. From its early days, planning was thought of as
a type of automatic programming (Sussman, 1973); the form of a plan and a test case can
be made to be extremely similar. Unlike programs, plans do not always include control
structures and new plans often must be generated for each test case.

The emphasis on goals means that sequences of actions (e.g., plans or test cases) are
generated specifically to fulfill some purpose and that it is relatively easy to generate different
plans for different goals. So, instead of focusing on what cases to generate, we think about
why we wish to test certain aspects of the system and let the planning system determine
what cases to generate. This appears to complement a goal oriented testing approach by
human testers who start thinking about what they want to test before deciding how they will
do so. Traditional generation methods are procedural, emphasizing how generation has to
proceed.

Planning has been used for a variety of applications within software engineering. For
example, Anderson and Fickas used planning as the underlying representation for soft­
ware requirements and specification (Fickas and Anderson, 1988, Anderson, 1993). The
planner automates portions of the requirements engineering process: proposing a func­
tional specification, critiquing the specification and modifying the specification to remove
deficiencies. Another system, Critter, assisted analysts in designing composite systems
(Fickas and Helm, 1992) by viewing the design of composite systems as problem solving.
The system included tools for generating example plans/scenarios that violate problem con­
straints (a specific type of design test case), simulating portions of the design and expediting
design decision making and evaluation.

www.manaraa.com

TEST CASE GENERATION AS AN AI PLANNING PROBLEM 81

Huff has exploited the structure of plans and their ability to relate disparate goals in
several applications in software engineering, e.g., (Huff88) in process engineering and
(Huff, 1992) in software adaptation. Rist represented different levels of functionality and
goals in programs using a plan representation (Rist, 1992); his PARE system extracted the
abstract plan structure from PASCAL programs to aid in program design and re-use.

3.1. The Planning System for the Prototype

We used the UCPOP 2.0 planner as the basis for our prototype test case generator
(Barrett et al., 1993, Penberthy and Weld, 1992). The planner was selected because it is
relatively easy to use and the software is easily obtained. UCPOP is a "Universal Condi­
tional Partial Order Planner" which means that it can represent goals that include universal
quantifiers (e.g., execute some operation on all possible objects) and that it does not order
the sequence of operators in the plan until necessary, which makes it more flexible.

The planner requires a domain knowledge base of operators. Operators are represented
in structures and are described in terms of their parameters, preconditions, and effects.
Parameters in the operators refer to all of the objects appearing in the action description and
are included in the preconditions and effects. Preconditions describe any state information
that makes an operator eligible to be executed, and effects describe how state is changed by
an operator.

As with many other planners, UCPOP builds a plan by incrementally adding actions that
reduce the difference between the initial state and the goal state. To support that process,
the domain description should be complete: include all effects and preconditions of all
known operators. If it is incomplete or incorrect, the plan may be as well. Rules about
which operator to apply are mostly handled by the planning system's manipulation of the
operators, but may be tuned through the use of search control rules that direct selection of
goals and operators.

4. Experimental Domain: StorageTek Robot Tape Library Command Language

Storage Technology Corporation (StorageTek) produces an Automated Cartridge System
(ACS) that stores and retrieves cartridge tapes (StorageTek, 1992). The system maintains
magnetic tape cartridges in a 12-sided "silo" called a Library Storage Module (LSM). Each
LSM contains a vision-assisted robot and storage for up to 6000 cartridges. Tapes occupy
cells in the panels. New tapes are entered through a special door called a Cartridge Access
Port (CAP). Figure 1 shows a single LSM with tape drives, access port, and control unit.
The robot inside the LSM identifies tapes using an optical scanner. Once a tape is identified,
the robot moves the tape to a cell, mounts the tape in a tape drive, dismounts the tape, or
ejects the tape through a CAP. One ACS can support up to sixteen LSMs. Figure 2 shows a
"top-down" look at an ACS with three LSMs. Tapes move between LSMs through special
doors called "pass-through-ports."

The ACS and its components are controlled through a command language interface called
the Host Software Component (HSC). Each HSC supports from one to sixteen ACS systems.

www.manaraa.com

82 HOWE. VON MAYRHAUSER AND MRAZ

Library Storage Module
(LSM)

Library Control Unit
(LCU)

Cartridge Access Port
(CAP)

Tape Transports

(a)

Figure I. Library Storage Module (StorageTek, 1992)

Pass Through Port

Cartridge Access Port
(CAP)

Cartridge Storage Panels

(b)

Figure 2. Automated Cartridge System with Three LSMs (StorageTek, 1992)

HSC commands manipulate cartridges, set the status of various components in the system,
and display status information to the operator's console. The command language consists
of 30 commands and 45 parameters.

The experimental subdomain uses 9 commands and 11 parameters. The subdomain
models "Moving" tapes within the ACS and "Mounting/Dismounting" tapes to/from tape
drives. We chose this subdomain because it captures all the sophisticated aspects of the

www.manaraa.com

TEST CASE GENERATION AS AN AI PLANNING PROBLEM 83

Table 1. Domain Analysis Steps for Domain Based Testing

Domain Analysis Step
1. Object Analysis

1.1. Define Objects and Object Elements
1.2. Define Default Parameter Values and

Object/Object Element Glossaries
1.3. Define Object Hierarchy
1.4. Annotate Hierarchy with Parameter Constraints

2. Command Definition
2.1. Command Language Representation
2.2. Identify Pre/Post Conditions
2.3. Identify Intracommand Rules

3. Script Definition (Command Sequencing)
3.1. Script Class Definition
3.2. Script Rule Definition

Domain Model Component

Set of Objects
Default Parameter Sets

Object Hierarchy
Parameter Constraint Rules

Command Language Syntax

Intracommand Rules

Script Classes
Command Sequencing Rules

application while stripping from it several simple commands (involving command name and
one or two possible parameter values) and those commands that are not part of behavioral
rules. This gives the subdomain the realism of the application, without all the bulk.

5. Domain Analysis

Domain analysis is well known in the reuse community (Hooper and Chester, 1991,
Biggerstaff and Perlis, 1989). Here we apply it to build an application domain model
from which to generate test cases. Thus our domain analysis is specialized due to its pur­
pose: testing the application. In addition to domain components that are command language
independent, we also need to capture the syntax of the command language. The represen­
tation should be such that no syntax independent changes are necessary when changing
command languages (e.g., when comparing Storage Technology's versus IBM's versions
of robot-controlled tape libraries).

Table 1 lists the steps for the domain analysis and the domain model components generated
at each step. The next subsections describe details of applying this analysis (von Mayrhauser
et al., 1994c). We will use the StorageTek automated tape library to illustrate each step.

5.1. Object analysis

The first step identifies the objects of the system, object elements, and relationships between
the objects. Objects denote physical or logical entities from the problem domain. Object
elements define qualities and properties of the object. Object relationships are used to define
parameter value constraints. In Object Oriented Design (OOD), analysts and designers em­
ploy a variety of rules to identify objects (Booch, 1991). This specialized domain analysis

www.manaraa.com

84 HOWE, VON MAYRHAUSER AND MRAZ

C Cartridge J

DISHount i, 1 <volaer>} <drlve;-id>

Ctivan (<drlve- ld> | <drive-ranae>

E<hofl^a>] 1

^ X H X ,
1 (<drlva~l lat>)) [<host- id>]

Figure 3. Analyzing HSC Commands for Objects and Object Elements

focuses on syntactic elements, user documentation, and user semantic interpretation for
object identification.

Step #1.1 identifies objects of the system under test. Each parameter in the command
language is categorized according to the object it influences. This classification gives a
first cut of the objects and their properties. Figure 3 shows how two HSC commands from
the robot tape library have parameters that relate to three domain objects Cartridge, Tape
Transport, and HSC.

The parameters within each object are object elements. Each object element is classified
by defining its object element type. Object elements are similar to the concept of object
attributes in OOA/OOD (Booch, 1991, Rubin and Goldberg, 1992), except that for testing,
we do not need as much information about an object when compared to the amount of
information needed to implement one.

Each object element is classified as a parameter or non-parameter of the command lan­
guage. Object elements related to command language parameters can be parameter at­
tributes, mode parameters, or state parameters. A parameter attribute uniquely identifies
an object. Mode parameters set operating modes for the system under test. State param­
eters hold state information for the object. Sometimes domain analysts provide semantic
information that cannot be found in the parameters of the command language. These object
elements are called non-parameters and may be important for test case generation. A non-
parameter event is an event caused by the dynamics and consequences of issuing a sequence
of commands. A non-parameter state is state information that cannot be controlled through
the command language.

Step #1.2 defines default parameter sets for each object element and creates two glos­
saries, the object glossary and the object element glossary. The object glossary maintains
information about each object by recording its name, a short description, a list of commands
associated with the object, and the names of its object elements. Table 2 shows the LSM
entry from the Object Glossary.

Another glossary stores detailed information about each object element. To select pa­
rameter values, automated test generation must know the range of values for each element,
the representation of each object element, and the default set of values for each object ele­
ment. Table 3 shows an entry from the Object Element Glossary for the StorageTek HSC
command language.

www.manaraa.com

TEST CASE GENERATION AS AN AI PLANNING PROBLEM 85

The next step in the domain analysis determines relationships between objects. These
relationships are captured in an object hierarchy in the form of a structural or "part-of"
hierarchy. Step #1.4 annotates the object hierarchy with parameter constraint rules which
describe how the choice of one parameter value constrains the choices for another. For
example (see Figure 4), each ACS supports up to sixteen LSMs (shown in the figure as an
arrow from the ACS object to the LSM object). Each LSM contains panels, tape drives,
cartridge access ports, etc. Arrows from the LSM to each object denote this structure.
Annotations on the arcs state parameter constraint rules. For instance, the choice of an ACS
(i.e., a specific acs-id value) constrains choices for the LSM (i.e., possible Ism-id values).

5.2. Command definition

Step #2 of the domain analysis defines command syntax and semantic rules for each com­
mand. Three types of semantic rules are defined for commands: preconditions, postcondi­
tions, and intracommand rules. Preconditions ensure proper state or mode for a command
and may constrain valid parameter values. Postconditions state effects on object elements
and influence future command sequences or parameter value selection. The third com-

Table 2. Object Glossary Entry for the LSM Object

Object
Description

Commands
Parameter Attribute
Mode Parameter

Parameter State
Non-parameter Event
Non-parameter State

LSM
Library Storage Module - A single
tape "silo"
DISPLAY MODify MOVE View Warn

Ism-id
Ism-subpool-threshold
Ism-scr-threshold
Ism-status
Ism-full
none

Table 3. LSM Entry from the HSC Object Element
Glossary

Parameter
Attribute
Full Name

Definition

Values
Object
Representation

Ism-id
Library Storage Module (LSM)
Identifier
Names an Instance of an LSM
within an ACS
000.. .FFF
LSM
Range of values

www.manaraa.com

86 HOWE, VON MAYRHAUSER AND MRAZ

mand level semantic rule is called an intracommand rule. These rules identify constraints
placed on parameter value selection within a command. To illustrate, user documentation
for the StorageTek HSC MOVE command states, "when moving a tape within the same
LSM, the source and destination panels must be different." The domain model captures
this intracommand rule as: if (lsm$l=lsni$2) => (panel$l ^ panel$2).

5.3. Script definition

Step #3 describes dynamic system behavior by capturing rules for sequencing commands
and by classifying commands from the problem domain. Sequencing information is neces­
sary because arbitrarily ordering a list of commands rarely produces semantically correct
test cases.

The first part of scripting analysis is to group related commands into scripting classes.
Scripting classes can partition by function, object, or object element. Functional partitioning
creates scripting classes that include commands that perform similar actions. For example,
in the StorageTek domain, the set-up class includes all commands that perform system set

Object

Inheritance Rule
Attribute
State Parameter s t a t s
Mode Parameter Mode
NonParameter State ^P State
NonParatncter Event JVP Event

Figure 4. StorageTek Object Hierarchy

www.manaraa.com

TEST CASE GENERATION AS AN AI PLANNING PROBLEM 87

Any*

DISMOUNT
MOUNT

Figure 5. State Transition Diagram for the MOUNT-DISMOUNT Script Rule

Table 4. Script Rule: Parameter Value Selection

Rule Description
Choose any vaHd value for p
Choose a previously bound value forp
Choose any except a previously bound value for p

up functions; the action class includes commands that manipulate and exercise the robot
tape library. If we partition the commands by object, then we examine each object and
create a class that contains all commands that influence that object.

Step #3.2 of the scripting analysis defines command sequencing rules. The results from
this step include command sequencing information (i.e., script rule) and parameter binding
information for each rule. For example, in the robot tape library, tapes must be mounted
before they can be dismounted. Scripts are visualized as state transition diagrams (see
Figure 5). Arcs are labelled with the names of specific commands or script classes. By
restricting the commands that can be executed on each arc, we can create proper command
sequences.

A command sequence can be annotated with parameter selection rules, as shown in Table
4. The first rule, p*, states that the value for parameter p can be selected from any valid
choice as long as it fulfills parameter constraint rules. The second rule, p, restricts the value
of parameter^ to a previously bound value. The third rule, p-, denotes that parameter^ can
be selected from any valid choice except for the currently bound value of p. To illustrate,
the MOUNT - > DISMOUNT Sequence is annotated with script parameter selection rules.

MOUNT tape-id* drive-id*
Any*
DISMOUNT tape-id drive-id

www.manaraa.com

8 8 HOWE. VON MAYRHAUSER AND MRAZ

This rule states that the tape-id and drive-id parameters can be selected from any valid
choice for the MOUNT command while the DISMOUNT command must use the previously
bound value for the tape-id and the drive-id parameters. Simply stated, the tape that is
mounted in a drive should be dismounted from the same drive.

6. Test Generation in Sleuth and UCPOP

The two approaches were developed from the StorageTek domain analysis. The Application
Domain Based Testing method was implemented in Sleuth, an automated test generation
tool developed at Colorado State University. The AI planning approach was implemented
in UCPOP augmented by Lisp code.

Sleuth supports Domain Based Testing by providing tools and utilities for test generation.
The main window directs the test generation process (see figure 6). Sleuth provides utilities
to create domain models, configure test subdomains, and to generate tests. Sleuth is designed
to maximize reuse of commands at all levels of abstraction (von Mayrhauser et al., 1994b),
simplify uniform testing across configurations and versions, and support regression testing
(von Mayrhauser et al., 1994a).

In this section, Sleuth and the planner implementation are described in terms of their
architectures and knowledge representations. The two approaches are compared in terms
of the test cases they generate and their basic capabilities.

6.1. Architectures

6.1.1. Sleuth Architecture

Sleuth is based on the Test Generation Process Model (shown in figure 7). The domain
model, DQ, captures the syntax and semantics of the system under test. Tests generated
from DQ are "valid" sequences of commands that follow all syntax and semantic rules in the
domain model. Often, the domain model is modified to test a specific system configuration
or to test a particular feature of the system under test. This creates a test subdomain, TSD^,
one for each modification j . Test Criteria influence the test subdomain definition and the
test generation steps. Test engineers use their knowledge to modify the domain model.
They also guide test generation by recalling archived test suites, identifying how many
commands to generate, and what commands to generate.

Test Generation uses the test subdomain and instructions from the test engineer to create
test suites, T^. A test suite for DBT may contain test cases, test templates, and test scripts.
A test case is a list of fully parameterized commands from the syntax of the problem domain.
A test template is a list of commands with place holders for parameters. Test scripts are
lists of command names.

As shown in figure 6, Sleuth uses a three stage test generation process. In the first stage,
script classes and script rules are expanded. This produces a list of command names. The
second stage creates a command template. Parameters remain as place holders. The last

www.manaraa.com

TEST CASE GENERATION AS AN AI PLANNING PROBLEM 89

VARY
MOVE
BNTBH
MOVE
DRAIN
DISMOUKT

ISm™.)

f O - K H K l

VAUYDini-riJOMIiie
MOVB nsm C [tan-UI) r<ul < 1
BHTEIIoap-U]
MOVEVihmt:([nUer-lij) TL
SKAIHIcqi-td]
DISMOUNTtmlial [Mn-HJ

|6*Hf>M >

IMOUNTEVTISDAU
VARYODl-OCDONliie
HOVB n a i (OODO Pand <H>Kr
BNTBKim
MOVE Vommc (EVTM9.EVT2B
DHAINOIO
DISMOU NT BVTUa AU MVS

3 3 1-1 I EC
JBgrn*

EC

Figure 6. Window Based Test Generation Tool

Syntactic
Elements "̂"̂ ~̂ ,̂

Domain Analyst
Semantic

Interpretation

Domain
Analysis

-. n" ,
\

1

Test Engineer
Testing Strategy

1

Test Subdomain
Defmition

Test
Criterion

V

j

1

Test
Generation

, T''
' ^j

Figure 7. Test Generation Process Model

www.manaraa.com

90 HOWE, VON MAYRHAUSER AND MRAZ

User constraints on
parameter selection •
and commands

/'Problem ^ /frppfY&N (^

Domain Knowledge:
- valid parameters values
- operator types
- operator descriptions

[Command
Postprocessor

Uin Lisp) ,

Storage Tek
-Interface
Commands

Figure 8. Sequence for generating test cases using UCPOP

Stage uses script parameter binding rules, parameter value sets, and parameter constraint
rules to create a fully parameterized list of commands.

6.1.2. Planning Architecture

The planning version divides test case generation into three steps: generating a problem
description, creating a plan to solve the problem, and translating the plan into test case
notation. As shown in Figure 8, these three steps correspond to three modules, respectively:
preprocessor, planner and postprocessor.

The preprocessor develops a problem description based on user directions. The problem
description consists of a problem name, domain knowledge, an initial state and a goal state.
The problem name is generated automatically. The domain is the knowledge base that
describes the commands in the language. The knowledge base is described in section 6.2.2;
ways of manipulating the knowledge base are described in section 7. The initial and goal
states define the specific needs of a particular test case.

The preprocessor incorporates knowledge about how command language operations re­
late to changes in the state of the system. The user indicates how many of different types
of operations should be included in the plan. Based on knowledge of the test domain,
the preprocessor creates an initial state and goal state description that would require using
the indicated commands. For example, if the user requests three move operations to be
accomplished, the preprocessor defines an initial state with at least three tapes in randomly
selected positions and a goal state which specifies three new randomly selected locations for
the tapes. The initial state also includes information about the robot tape library configura­
tion and initial status information; the configuration information is taken directly from the
knowledge base and the initial status information is randomly generated from the problem
constraints.

The planner, UCPOP, constructs a plan to transform the initial state into the goal state.
If a plan cannot be found within a set amount of time, then the planner fails. In this case,
we try a different initial state and goal state that satisfies the user's requirements. Because
UCPOP is a fairly simple and inefficient planner, more complex and demanding problem

www.manaraa.com

TEST CASE GENERATION AS AN AI PLANNING PROBLEM 91

Table 5. Domain Model Components and Hybrid Representation

Domain Model Component
Script Classes
Script Sequencing Rules
Script Parameter Binding
Command Language Syntax
Command Preconditions
Command Postconditions
Intracommand Rules
Parameter Constraint Rules

Hybrid Representation
Sets of Command Names
Macro Expansion
Macro Expansion
Syntax Diagrams
Implicit representation
Implicit representation
First Order Logic
Parameter Value Sets
Parameter Constraints based on Set Operations

descriptions are more likely to fail. Because this is a prototype, we did not attempt to
improve UCPOP's performance on our problems.

The postprocessor translated from UCPOP's plan representation to the HSC syntax. The
transformation was purely syntactic and relatively straightforward.

UCPOP is written in Lisp. Thus, the supporting code was written in Lisp and could
create data structures for UCPOP, run UCPOP and access and modify the return values
from UCPOP, The declarative nature of the representations in Lisp expedited automati­
cally modifying the knowledge base and so changing the nature of the kinds of test cases
generated.

6.2. Knowledge Representation

6.2.1. Sleuth Representations

Sleuth uses a hybrid domain model representation (see Table 5) during test generation.
Script Representation

Scripts capture dynamic behavior of the system under test. We represent three categories:
Script Classes, Script Rules, and Script Parameter Binding. A scripting class helps testers
select what type of commands should be generated for a test case. A command can be a
member of more than one class; the number of classes and the types of script classes is
problem dependent. The experimental subdomain for this research used the commands in
Table 6 and assigned them to three script classes. The Any class contains all commands.
Set-up commands perform machine set-up. Action commands cause physical actions
within the ACS.

For script rules, macro expansion ensures that commands are sequenced properly. For
example, in the robot tape library, one cannot "dismount" a tape from a tape drive unless
one has previously been "mounted." The macro representation for this rule is; MOUNT

<Lis t of Commands> DISMOUNT. Parame/erZ>/n<im^ makes sure the parameters in the
command sequence are meaningful. For instance, parameter binding information ensures
that the tape that is "mounted" is the same tape that is "dismounted." This implicitly

www.manaraa.com

92 HOWE. VON MAYRHAUSER AND MRAZ

Table 6. Commands and Script Classes for the StorageTek Experimental Subdomain

Command Name
Dismount
Display
Drain
Eject
Enter
Modify
Mount
Move
Srvlev

Description
Dismount a tape from a tape drive
Display information to the console
Release the Cartridge Access Port {
Eject tapes through CAP
Enter tapes through CAP
Turn an LSM Online or OfHine
Mount a tape in a tape drive
Move a tape within an ACS
Set system service level

Script Class
Any
Any
Any
Any
Any
Any
Any
Any
Any

Action
Action
Action
Action
Action
Set-Up
Action
Action
Set-Up

handles preconditions and postconditions in the domain model as they relate to command
sequencing.
Command Representation

The second component of the domain model captures the syntax and semantic rules for
each command. Command syntax is needed to generate a command from the command
language. Sleuth's representation uses syntax diagrams for each command and a random-
walk through the syntax creates an instance of a command.

Intracommand rules identify constraints placed on parameter value selection within a
single command. These rules are represented in the domain model in first-order logic.
Parameter Representation

Parameters of the command language are represented as Parameter Value Sets. Using the
set operations of Union, Intersection, and Difference, a variety of parameter sets can be de­
fined. During test generation, parameter values may be constrained. For example, the value
for a particular LSM (Ism-id) constrains possible values for panels, rows, and columns for
cartridge storage. Parameter constraint rules are represented using a "parameter" hierarchy
that denotes relationships between "parameters" and set operations to modify parameter
value sets from which the test suite generator may select.

6.2.2. Planning Representations

UCPOP provides its own representations for planning operators; in addition, we represented
domain knowledge in structures, lists and procedures in Lisp to support the pre- and post­
processors. Table 7 lists each domain model component and its planning representation;
each one is described subsequently.
Script Representation

A script class is represented as the planner's domain. In UCPOP, the domain is simply
a list of operator definitions. In the experimental subdomain, the list contains eighteen
operations: four versions of the move command, eject, enter, connect, servicetofuU, ser-
vicetobase, modifytooff, modifytoon, drain, mount, dismount, and four versions of the
display command.

www.manaraa.com

TEST CASE GENERATION AS AN AI PLANNING PROBLEM 93

Table 7. Domain Model Components and AI Planner Representation

Domain Model Component
Script Classes
Script Sequencing Rules
Script Parameter Binding
Command Language Syntax

Command Preconditions
Command Postconditions
Intracomraand Rules
Parameter Constraint Rules

Planner Representation
Collection of Planner Operators
Operator preconditions
Operator effects
Operators : One operator for each "path" in a command.
Postprocessor: Translates Planner output into Command Language
Syntax.
Operator preconditions
Operator effects
Operator preconditions
Preprocessor : Initial State Generator
Preprocessor: Goal Generator
Preprocessor: supporting data structures

;;Description : Mount a tape in a tape drive.
;;Precondition : Service-Level = FULL.
;; Tape is inside the LSM.
;; LSM-status = ONLINE.
;;Postcondition: Tape is in the tape drive.
(define (operator mount)

:parameters ((loc ?slsm) ?vid ?m.did ?p ?c ?r)
:precondition (and (full slev)(in ?vid ?slsm ?p ?r ?cXon ?slsm))
leffect (and (at ?vid ?m.did)(not(in ?vid ?slsm ?p ?r ?c))))

;Description : Dismount a tape from a tape drive.
;Precondition : Service-Level FULL
; Tape is in the tape drive.
iPostcondition: Tape is placed into the LSM.

(define (operator dismount)
:parameters(?vid ?m_did ?d.did ?p ?c ?r)
:precondition(and (full slev)(at ?vid ?m_did)(eq ?m-did ?d.did))
reffect (and (not (at ?vid ?m_did))(backtolsm ?vid through ?d.did)

(in ?vid unknown unknown unknown unknown)))

Figure 9. Planning representations of the Mount and Dismoimt commands

Sciipt sequencing rules and parameter binding together legislate the correct ordering of
commands. The AI planning representation includes this information implicitly in the
preconditions and effects of the planner operators. For example, one sequencing rule
requires that MOUNT precede DISMOUNT, which is implemented with the planner operators
listed in Figure 9. Preconditions for DISMOUNT require a tape to be in a tape drive. A tape
can be placed into a drive in one of two ways; (1) a tape can be in the tape drive in the
initial state, or (2) the tape can be loaded as an effect of the MOUNT operator.

www.manaraa.com

94 HOWE, VON MAYRHAUSER AND MRAZ

;;Descriptioii : Change Service-Level to FULL.
;;Precondition ; None.
;;Postcondition: Service-Level = FULL.
(define (operator servicetofull)

:precondition (base slev)
:effect (and(not(base slev))(full slev)))

;;Description : Change Service-Level to BASE.
;;Precondition : None.
;;Postcondition: Service-Lever = BASE,
(define (operator servicetobase)

iprecondition (full slev)
:effect (and (not (full slev)) (base slev)))

Figure JO. Example planning representations of the command language syntax; changing service level

Command Representation
The next domain model component is the command language syntax. Unlike the grammar

based methods, the AI planner does not explicitly represent the syntax of the command
language. Instead, each path through a command is represented as a separate planning
operator. A path through a command differs primarily in the type and number of parameters
for the command. Thus, the resulting plan operators may differ in their parameters, possible
parameter values and preconditions. For instance, the StorageTek command language uses
the SRVLEV command to "toggle" the system's service level: service-level-cmd : : =
SRVLEV {BASE I FULL}. AS Seen in Figure 10, two operators encode the command for
the planner: one to change to "full" and the other to change to "base". To implement the
toggling effect, the precondition is that the current level must be other than the value to
which it is being set.

Each planning operator is represented in a form similar to the command syntax (i.e., same
number and type of parameters but formatted in the planner's representation). In the case of
the two service level commands, the planning action SERVICETOFULL is converted to the
StorageTek command SRVLEV FULL. A postprocessor translates the planner output into
the correct syntax.

The next three domain model components are command preconditions, command post­
conditions, and command intracommand rules. All three are represented as preconditions
and effects of planner operators. A command language precondition denotes sequencing
information based on system state (in contrast to the script sequencing rules which are not
assumed to involve system state). If the system is not in the correct state, the precondition
provides information to put the system in the proper state. Likewise, command language
postconditions specify how the state of the system changes upon executing an operator. For
a conmiand to be included in a valid plan, its preconditions must be satisfied by the initial
state or by the effects of an action that precedes it.

Intracommand rules are also specified as preconditions to planner operators. These pre­
conditions check parameter values within the command. Figure 11 shows one version of the

www.manaraa.com

TEST CASE GENERATION AS AN AI PLANNING PROBLEM 95

;Description : Move a volume in a specific location to the destination LSM,panel.
;Precondition : Source and destination LSM are online.
; Service level is full.
; Volume location is specified by LSM, panel,row,column.
; Source and destination LSMs are connected.
;Intracommand : Source and destination LSMs must be equal.
; Source and destination panels must be different.
;Postcondition: Move the volume to a new panel inside the same LSM.

(define (operator movefour)
: parameters ((loc ?slsm) ?sp ?sc ?sr (loc ?dlsm) ?dp ?dc ?dr (tape ?vid))
:precondition (and (full slev)(on ?slsm)(on ?dlsm)

(eq ?slsm ?dlsm) (neq ?sp ?dp)
(in ?vid ?slsm ?sp ?sr ?sc)
(eq ?dc unknown) (eq ?dr unknown))

:effect (and (from ?vid ?slsm ?sp ?sr ?sc ?dlsm ?dp ?dr ?dc)
(in ?vid ?dlsm ?dp ?dr ?dc)
(not (in ?vid ?s]sm ?sp ?sr ?sc))))

Figure 11. Example planning representation of the command preconditions, postconditions and intracoraraand
rules: move a volume

MOVE command, which encodes the previously discussed intracommand rule by requiring
s lsm (source LSM) and dlsm to be equal (eg) and sp (source panel) and dp (destination
panel) to be not equal (neq). Another version of the move command covers the case in
which the LSM's differ.
Parameter Representation

The last domain model component represents command language parameters and pa­
rameter constraints. The AI planner uses two components of the preprocessor to capture
this information: Initial State Generator and Goal Generator. The initial state generator
creates an initial state vector for the planning system by randomly choosing from options
constrained by the user's goals and the parameter constraints. Parameter constraints are
represented declaratively where possible and procedurally where necessary. For example,
the configuration of the LSMs (their panels, rows, columns, etc.) are represented in struc­
tures and lists; the relationship of the variables in the configurations (e.g., panels have rows
and columns) is represented in the preprocessing code.

In the StorageTek experimental subdomain, we concentrated on two test generation goals:
Moving tapes and Mounting/Dismounting tapes. Therefore, all state information necessary
for these experiments was included in the state vector. Figure 12 shows an example of
an initial state which includes basic system status (e.g., service level), configuration (e.g.,
three LSM locations are available) and inventory (e.g., one tape is in LSM 10).

The second preprocessor uses object and parameter constraint information to generate a
goal for the planner. A single goal for these experiments is to move an individual tape,
to mount^dismount a single tape, or display information. If more than one command
is needed, a conjunctive goal is created. An example of a compound goal is shown in

www.manaraa.com

9 6 HOWE, VON MAYRHAUSER AND MRAZ

initial-state = ((BASE SLEV) (LOC 0) (ON 0) (CAP 0 ENTERING) (LOC 1) (OFF 1)
(CAP 1 ENTERING) (LOC 10) (OFF 10) (CAP 10 ENTERING)
(CONNECT 0 1) (TAPE EVT297)(IN EVT297 10 UNKNOWN
UNKNOWN UNKNOWN))

goal = (AND (FROM EVT280 0 UNKNOWN UNKNOWN UNKNOWN
1 UNKNOWN UNKNOWN UNKNOWN)
(FROM UNKNOWN 0 12 3 0 4 5 6))

Figure 12. Example planning representation of objects, object elements and parameter constraints: initial state
list and goal list

Figure 12. This compound goal was generated based on a request to create a test case with
two tape movements in it. The fields in the goal statement are:

(FROM [tape-id] [src Ism] [src panel] [src row] [src column]
[dest Ism] [dest panel] [dest row] [dest column])

The first subgoal requests the system to move tape EVT280 from LSM 000 to LSM 001.
In this goal, we are not concerned about where the tape is located. We are only concerned
about moving it to a different LSM. In the second subgoal, a tape located in panel 1, row
2, and column 3 is moved within the same LSM to panel 4, row 5, and column 6. These
two examples show how testers can focus test generation at different levels of abstraction
through planning system goals.

6.3. Example Test Cases

The planner based generator and Sleuth produce qualitatively different test cases. Sleuth
generates commands from user directions on number and type and primarily by resolving
sequencing rules with macro expansion and by making choices at points in a grammar; the
planner version generates initial and goal states from choices based on user directions on
number and type of commands and by generating a legal sequence of actions to achieve the
selected goals.

Table 8 shows test cases generated by both systems when they were asked for a test case
with a move command. The solution formulated by Sleuth generates a sequence of laODiFY
commands. The first two perform useful work, but the third is redundant because Sleuth
does not maintain state information. The ENTER command is a result of Sleuth's random
command selection. The ENTER command requires a sequencing rule: ENTER followed by
one or more other commands followed by a DRAIN. Command #5 finally issues the MOVE

command as required. The last two commands complete the test case. StorageTek testers
interpret test cases like this from the point of view of testing a shared device. While this test
case seems to have redundant or extraneous commands, the testers consider the sequence a
merged list of instructions from multiple users.

www.manaraa.com

TEST CASE GENERATION AS AN AI PLANNING PROBLEM 97

Table 8. Comparing Sleuth and UCPOP Tests

1
2
3
4
5
6
7

57ewl^ Test Case
MODIFY 001 ONline
MODIFY 000 ONline
MODIFY 000 ONline
ENTER 000
MOVE (EVT289) Tlsm(OOO)
MODIFY 001 ONline
DRAIN 000

UCPOP Test Case
MODIFY 000 ONLINE
SRVLEV FULL
DRAIN 000
ENTER 000
MOVE VOLUME(EVT280) Tlsm(OOl)

The UCPOP test case must be generated in the context of the initial state and the goal.
The initial state sets LSM 000 offline, Service level to Base, CAP 000 to Entering, and
tape EVT2 8 0 located outside the ACS. The goal was to move a particular tape to LSM 001.
The first two commands issued by the planner adjust the state of the system such that other
commands are meaningful and can be executed. The DRAIN command is necessary because
the initial state of the CAP is Entering. Since the CAP is a shared device, it must be released
by the DRAIN command first. The ENTER command is important because tape EVT2 8 0 is
currently located outside the robot tape library. After the tape is entered, the system issues
the MOVE and achieves the goal. The UCPOP test case is shorter and more focused than the
Sleuth case.

The planner's test cases incorporate more assumptions about the state of the system and
compose the test cases based on different criteria. For example, Figure 13 shows a simple
example of a test case developed by the planner and supporting code and represented in
UCPOP's language. In response to a request for a test case with one dismount and one
display command, the preprocessor generates an initial state with a tape, EVT297, located
in LSM 010 (IN EVT297 lo 16 7 23) and its LSM online (ON 10). The goal is to display
a console status report about the LSM and to move the tape from tape drive A3 6 to its LSM.

UCPOP's solution is listed in steps 1-3, and the postprocessor output is listed last. In
this case, to generate a dismount, a tape must be in the drive, so a mount command is
generated first. Each step is listed with its preconditions and each precondition is prefaced
by the step number that satisfies it (a zero indicates it is satisfied by the initial state). Thus, a
minimal plan for the test case requirements is three steps because the required preconditions
concerning status are all fulfilled by the initial state. The postprocessor examines each step
and generates the correct syntax for the StorageTek Robot Tape Library.

6.4. Comparison of Capabilities

We implemented 18 operators in the planning system which correspond to 9 commands in
the StorageTek domain. In the Sleuth representation, the 9 commands required 9 syntax
diagrams, 4 scripting rules, 1 intracommand rule, and eleven parameter files. We compared
the two approaches in three ways: how much effort was required for model development

www.manaraa.com

98 HOWE. VON MAYRHAUSER AND MRAZ

Initial:

Step 1:

Step 2:
Step 3:

Goal:

Postprocessor:

step 1 is:
step 2 is:
step 3 is;

((FULL SLEV) (LOC 0) (OFF 0) (CAP 0 DRAINED) (LOC 1) (OFF 1)
(CAP 1 DRAINED) (LOC 10) (ON 10) (CAP 10 ENTERING) (CONNECT 0 1)
(LOC ACS) (TAPE EVT297) (IN EVT297 10 16 7 23))

(MOUNT 10 EVT297 A36 16 23 7) Created 2
0 -> (IN EVT297 10 16 7 23)
0 -> (LOC 10)
0 -> (ON 10)
0 -> (FULL SLEV)
(DISPLAY2 0) Created 3
(DISMOUNT EVT297 A36 A36 ?P1 ?C1 ?R1) Created 1
0 -> (FULL SLEV)
1 -> (AT EVT297 A36)

(AND (CONSOLEMSG DISPLAY2 0)
(BACKTOLSM EVT297 THROUGH A36))

(MOUNT EVT297 A36)
(DISPLAY LSM 010)
(DISMOUNT EVT297 A36)

Figure 13. Example Results from UCPOP ; Goal = Display console message about LSM and replace a tape
from tape drive A36 back to the LSM

and test generation, whether the test cases covered similar aspects of the domain, and what
kinds of test cases were generated by the planning system.

Although the representation language required by the planner was unfamiliar to those pro­
gramming the test cases, the planner implementation progressed fairly easily and resulted in
remarkably little code. The bulk of the implementation was done by Li Li, an undergraduate
who had no background in AI, but some in Software Engineering, over a 12 week period
which included learning about domain based testing, Sleuth and AI Planning. Of course,
this rapid development was expedited by the fact that the domain was well understood and
had already been implemented in Sleuth.

U C P O P required very little "code" to represent the experimental subdomain. The
two preprocessors, one postprocessor, and 18 operators needed 414 lines of code. For
Sleuth, the entire test generation tool required about 25,000 lines of C (internals and Motif
interface). However, Sleuth implemented a much larger test domain than U C P O P and
included utilities for domain model definition, test subdomain configuration, metrics, and
a sophisticated user interface. Despite the small code size in the planner, computation time
for a test case could take from minutes to hours due to the inefficiency of the underlying
planner.

We compared the domain coverage of the planning and Sleuth implementations by con­
sidering how each represented the seven levels of the domain model (as appear in Table 5).
Both the Sleuth and planner representations employed similar mechanisms to implement

www.manaraa.com

TEST CASE GENERATION AS AN AI PLANNING PROBLEM 99

Script Classes. The Sleuth representation stores command names in a set, and the planner
includes or excludes operators to form script classes.

Scripting Rules (sequencing rules and parameter bindings) require different approaches
in the two representations. The Sleuth scheme needs command sequencing information in
the first stage of test generation but it does not need parameter binding information until the
last stage. The AI planner includes sequencing information and parameter binding rules in
each operator.

The Command Syntax is represented differently in the two test generation engines. The
planning system encodes each "path" through a command as a separate operator. One
operator could represent multiple paths so long as all paths use the same parameters, the
same preconditions, and produced the same effects; UCPOP allows some flexibility in
the preconditions but little in the definition of the effects1. The test case is generated using
a postprocessor to translate the UCPOP output into the appropriate StorageTek syntax.
Sleuth stores each command as a syntax diagram and takes a random-walk through the
syntax diagram to create a command template.

Command Preconditions and Postconditions are not explicitly represented in the Sleuth
representation. They are either implicit in the script rule macros or testers must issue set
up commands or execute a list of commands to put the system in the correct state. Sleuth
does not keep track of non-parameter state information. The planner was able to represent
pre/post conditions in each planning system operator. The trade off between these two
representations is in the amount of state information required during test generation.

Parameter value sets and parameter constraints are handled differently in both domain
model representations. Sleuth uses parameter value files, set definitions, and set operations.
The default values for a parameter are defined using sets and set operations. If one parameter
value constrains the choices for another, additional set operations allow Sleuth to choose
from a constrained set. In the planning system, all parameter information was encoded into
the preprocessor, which uses information about default parameter values and parameter
constraint rules to define initial states and goals that do not violate the parameter selection
rules.

One of the most interesting aspects of our results were the differences between the planning
approach and the Sleuth approach to test data generation. Testers take different views of
the problem during test generation. Using Sleuth, the tester focuses on what subset of
commands to generate and how many commands. Using the planner, the tester describes
the desired outcome and allows the planner to choose the appropriate sequence of commands
to achieve the goal. We view planner based (goal oriented) test generation as a natural way
to generate tests.

An unexpected result of our comparisons was the kind of tests that were generated. The
planner can potentially "discover" unusual command sequences to achieve the goal. This
is beneficial in test data generation because obvious approaches get tested most often and
therefore find few or no faults. Unusual command sequences may achieve the same goal
but uncover faults from command sequences that were not considered. For instance, one
of our experiments required UCPOP to move a tape from one LSM to another. Instead of
generating a MOVE command, it EJECTed the tape from one LSM and ENTERed it into the

www.manaraa.com

100 HOWE. VON MAYRHAUSER AND MRAZ

next. While this is a simple example, it shows how the planner can create innovative test
sequences that the test engineers may not think about.

7. Extensions to the Basic System

Test generation systems should be flexible enough to accommodate a variety of test intents
and testing criteria. Therefore, the extensions to the basic planning system included capa­
bilities for testing against a variety of common testing criteria. Usually, testers test both
valid and invalid cases. Testers may want to focus testing on particular parts of the system
(a specific testing subdomain) for a variety of testing objectives: testing a particular (set
of) objects, testing specific commands, regression testing (testing new features and making
sure that nothing was broken), or testing specific configurations (represented as subsets of
values in the domain model). At other times, testers may need to test all possible values
of a specific parameter (e.g., a parameter reflecting possible tape media). Testers may or
may not be concerned about the order in which parameter values are chosen. This section
illustrates how these testing objectives can be achieved with Sleuth and with the Planning
system UCPOP. Sleuth provides test subdomain utilities for this purpose. For the planning
system, operator descriptions are declarative and accessible from Lisp; thus, functions are
easily built that modify the underlying knowledge base.

7.1. Invalid Test Cases

For systems with a command language as a user interface, invalid cases can represent
themselves in a variety of ways from testing erroneous syntax and violating rules of proper
behavior (violating scripting rules and intracommand rules in the script) to purposely gener­
ating invalid parameter values, either by using values that are always invalid, or by generating
values that are invalid in a specific context (e.g., values that violate parameter inheritance
rules). This type of testing concentrates on the syntax of the command language and tests
the error recovery capabilities of the parser. It also tests error recovery code related to
semantically erroneous commands.

In Sleuth, one can turn off scripting and intracommand rules, making it possible to generate
dynamically invalid command sequences interspersed with semantically correct command
sequences. If a tester wants only sequences that violate rules of proper behavior, a Sleuth
utility allows editing the rules (modification or negation) which would then guarantee
breaking of the rules in specific ways and thus test error recovery code of the system under
test. We can also edit the syntax with mutation operations. This causes commands with
incorrect syntax to be generated. Similarly, parameter value utilities allow the tester to
define parameter values that are invalid and to modify parameter inheritance rules so they
violate the actual domain's.

We can duplicate these capabilities in the AI Planner version. Scripting and intracommand
rules are built into the preconditions of the planner. Thus, the first mechanism for generating
invalid test cases is to identify such preconditions and either remove or change them.
For example, one scripting rule is that DISMOUNT should be proceeded by MOUNT. If the

www.manaraa.com

TEST CASE GENERATION AS AN AI PLANNING PROBLEM 101

Test Case A
DISMOUNT EVT280 A3 5
ENTER 010
SRVLEV FULL
MOUNT EVT2 89 A29

Test Case B
MODIFY 001 ONLINE
MODIFY 010 ONLINE
MOVE FLSM(Ol) PANEL{19) R0W(14)

COLUMNdO) TLSM(IO)
TPANEL(UNKNOWN)

EJECT 010 EVT289
DRAIN 00 0
ENTER 000

Test Case C
MODIFY 001 ONLINE
DRAIN 001
ENTER 001
MODIFY 000 ONLINE
MOVE VOLUME (X12B&C)

TLSM (000)

Figure 14. Invalid test cases: a) removing scripting rules, b) invalidating intracommand rules, c) illegal parameter
values

precondition that legislates that sequencing (i.e., that the tape be at the drive) is removed,
then DISMOUNT may not be preceded by MOUNT, as is the case in figure 14a.

One of the intracommand rules for the domain dictates whether a destination and source
LSM must be equal (or not) for particular types of MOVE commands. The preconditions
for the different move operators include these constraints; thus, the intracommand rules
can be invalidated by toggling the equality constraints in the operator descriptions. Doing
so produces test cases that are no longer syntactically correct. Given this change to the
operators and a request for a test case with a MOVE command, the planner version produced
the test case in figure 14b, in which the MOVE command includes the value "unknown" for
a panel.

Additionally, we can invalidate the parameter set used by the preprocessor. For example,
we can generate invalid tape ids, ones composed of illegal character combinations (e.g.,
123ABC, ABC, Or ! $#@&*), use these in the preprocessor and so generate illegal syntax, as
in the tape number listed in figure 14c.

7.2. Subdomains

During feature testing with Sleuth, testers may decide to focus their testing efforts by
excluding certain parts of the domain. This can take several forms: If scripting classes
were defined around similar functions, a tester may decide to turn off commands in some
classes, which ensures that these commands will never be generated. Similarly, if scripting
classes were defined around objects (such as tapes in the HSC domain), then a tester may
choose to turn off all but the commands in the tape scripting class (which contains all
commands that operate on tapes).

Further, testers may want to subset the application domain by constraining possible values
for parameter values (subsetting parameter value sets). Sleuth supports a parameter value
editor. For example, in the HSC domain, testers may only have a limited supply of named
tapes (and their associated tape- id parameter).

Test subdomains can also be generated by test criteria rules. An example of such
rules are the regression testing rules of (von Mayrhauser et al., 1994a). The approach un­
derlying these rules is to determine the changes made to the original domain (adding,
deleting, and modifying commands and associated rules) and from there to determine

www.manaraa.com

102 HOWE. VON MAYRHAUSER AND MRAZ

which parts of the domain are affected and therefore should be regression tested. Regres­
sion testing rules define the regression testing subdomain based on the types of changes,
(von Mayrhauser et al., 1994a) shows how to automate this for Sleuth.

With UCPOP, testers guide test case generation by loading or excluding portions of the
operator set during the planner's initiahzation. For instance, the experimental subdomain
focused on "moving" tapes within the tape library. By including or excluding certain "move"
operators, we could change test case generation, produce different command sequences for
similar goals, or focus on specific types of tape movement.

In UCPOP, the domain (the list of operators) is part of every problem definition. Thus,
the domain can be changed dynamically to reflect desired subdomains. For example, we
can search the knowledge base for which of the move operators require the destination and
source LSMs to be equal and restrict the domain to only those move commands. Because
the preprocessor is not given the information about the subdomain, it may be unable to
generate test cases from the subdomain; in this case, it returns the best test case possible,
which will be partially instantiated (i.e., some of the parameters will have no value) and will
be incomplete (i.e., it will not include all the commands necessary to complete the desired
goal).

7.3. Partition Testing

Partition testing (Goodenough and Gerhart, 1975, Hamlet and Taylor, 1990) includes all
testing criteria that define equivalence classes of input values with the proviso that a set of
tests is adequate if it contains tests with values from each of the equivalence classes. How
equivalence classes are developed varies: white box testing criteria may define equivalence
classes through branch or dataflow criteria. A black box criterion example is category
partition testing (Ostrand and Balcer, 1988).

In Sleuth, parameter values can be grouped into sets, from which values may be selected.
This provides an obvious mechanism for defining partitions. Rules regulate selecting spe­
cific sets (and thus values from them).

In the planner version, the preprocessor uses the parameter sets to generate the initial state
description. If the parameter sets are changed, then the preprocessor generates different
initial conditions, which conform to the testing criteria of the partition. For example, we
may have three partitions of tape ids: legally named valid tapes, legally named invalid tapes
and illegally named tapes. If we wish to generate test cases that move each type, then we
can generate three problem descriptions with the preprocessor, each relying on a different
set of tape ids, and then generate test cases for each problem description. Figure 15 lists an
initial state description for each of the three types of tape ids; the primary difference in the
test cases is the tape ids referenced.

7.4. Other Testing Strategies

On occasion, testers want to test all values of certain sets of parameter values. They may
want to do this in order or according to some random permutation of the values. In Sleuth,

www.manaraa.com

TEST CASE GENERATION AS AN AI PLANNING PROBLEM 103

Init

Goal

Legal, Valid
((FULL SLEV) (LOC 0) (ON
0) (CAP 0 DRAINED) (LOC
1) (OFF 1) (CAP 1 DRAINED)
(LOC 10) (ON 10) (CAP 10
DRAINED) (CONNECT 0 1)
(LOC ACS) (TAPE EVT185) (IN
EVT185 1 10 5 13))

(FROM EVT185 1 10 5 13 1 19
unknown unknown)

Legal, Invalid
((FULL SLEV) (LOC 0) (OFF
0) (CAP 0 ENTERING) (LOC
1) (OFF 1) (CAP 1 ENTER­
ING) (LOC 10) (ON 10) (CAP
10 DRAINED) (CONNECT 0
1) (LOC ACS) (TAPE SCRl 85)
(OUT SCR 185 ACS) (FROM
SCR 185 ACS UNKNOWN
UNKNOWN UNKNOWN))
(FROM SCRl 85 0 unknown un­
known unknown 10 unknown
unknown unknown)

Illegal, invalid
((FULL SLEV) (LOC 0) (ON
0) (CAP 0 DRAINED) (LOC
1) (ON 1) (CAP 1 ENTER­
ING) (LOC 10) (OFF 10)
(CAP 10 DRAINED) (CON­
NECT 0 1) (LOC ACS)
(TAPE ABC) (IN ABC 0 4 2
3))

(FROM ABC 0 4 2 3 10 4 un­
known unknown)

Figure 15. Partition Testing Example: partitioning cases by tape values

value selection is currently random, but could easily be enhanced to include capabilities
such as Maurer's probabilistic grammars (Maurer, 1990). Even so, setting the number
of commands to be generated high enough will guarantee that all parameter values will be
generated. While this ŵ ill not be a minimal set (in terms of number of commands generated),
it is sufficient. The random selection also assures that it will not be pathologically large.

As with partitioning, the preprocessor can step through parameter values as easily as
through parameter sets. In each case, the top level function in the preprocessor (which is
called "generate-problem") is called with modified values for the parameter sets; at present,
these sets are stored as global variables. In the case of partitioning, a whole new set is
substituted; for parameter value coverage, the code iterates over the set of values forcing a
single one to be used in each test case that is generated.

8. Future Work

The planning based test case generator described in this paper is just a prototype, intended
to assess whether the planning paradigm could generate interesting test sequences under a
variety of test criteria. Our explorations indicate that the domain knowledge about testing
is naturally represented in a planner and that the planner's representation and reasoning is
flexible enough to support different testing criteria.

However, a number of questions remain about the long term viability of planning as a
platform for automated test case generation. Can the planner be scaled up to larger test
cases and a larger domain model? What extensions are necessary for this to be a useful
tool for testers? What constitutes reasonable testing goals and should goal synthesis be
automated as well?

On the question of scale up, we have already encountered difficulties in producing long
test cases using the UCPOP planner. The planner is designed to be correct and complete,
which means that if a solution is possible, UCPOP will find it eventually. Because it was
designed as a theoretically and pedagogically interesting tool, its built-in search strategy is
not efficient. We have alleviated that problem to some extent by incorporating more efficient

www.manaraa.com

104 HOWE, VON MAYRHAUSER AND MRAZ

general search strategies (Srinivasan, 1995), but these changes are not enough. We will
explore two possibilities for expediting scale-up: including domain specific search strategies
in UCPOP and transferring the knowledge base to another planner. Some preliminary
explorations suggest that UCPOP is occasionally going down garden paths in the search
space for this domain; domain specific strategies should eliminate those pathologies. If
these strategies are inadequate for scale-up, then we will port the knowledge base to a
more efficient planner which is, however, harder to program. The simphcity of UCPOP is
attractive for expediting use by potential users.

In parallel with the search strategy effort, we will be implementing the full domain.
Because the subset includes examples of all types of representation for the domain, we
anticipate little problem with adding to the knowledge base.

On the question of encapsulating the planning version into a useful tool, the primary lack
is a user interface. At present, all interactions are through a set of Lisp functions, useful for
the developers who need to exert control, but awkward for any users. We will be building
a menu and query driven interface in CLIM (Common Lisp Interface Manager) for the
system. The composition of the interface (i.e., the options for the user) will depend in part
on determining how user's testing goals should be accommodated.

The primary research question remaining is representing and automating goal generation.
Our approach has been passive, requiring the user to indicate what should be done, and
command oriented, requiring goals specified in terms of number and types of commands.
Many other testing goals might be incorporated as well: focused testing of suspect parts of
the system, coverage of parameter or command sets, or testing for interaction effects between
sets of commands. These higher level goals could form the basis for strategic reasoning
about test suites; at present, we reason only about single test cases. Generating criteria for
test suites can be viewed as a higher level planning or search problem, making it conducive
to solution by a variety of AI techniques (e.g., hierarchical planning, heuristic search or
active learning). We need to enumerate the desired testing goals, acquire knowledge about
when goal types are most appropriate and how test suite goals are manifest in individual
test cases and incorporate test suite goal reasoning into the system and its interface.

Automated planning systems offer several potential advantages for test case generation.
First, ordering the operations in the test case and checking that the order is correct is handled
automatically by the planning system. Second, the representation is natural for describing
commands and their interactions, information that is necessary for developing test cases.
Third, the flexibility of describing new initial states and goal states makes it amenable
to generating many different test cases for the same system. Finally, the full description
required by the planner ensures that only correct cases will be generated. Conversely,
should illegal test cases be desired, they can be generated relatively easily by "mutilating"
the operator descriptions (e.g., removing parts of the preconditions or effects).

Planning for testing shows promise as a new method for automatically generating test
cases. We have demonstrated its value on a realistic subset of an industrial testing domain.
What remains is extending the method to larger sets and to test suites.

www.manaraa.com

TEST CASE GENERATION AS AN AI PLANNING PROBLEM 1 0 5

Acknowledgments

This research was partially supported by the Colorado Advanced Software Institute (CASI),
StorageTek, the Air Force Institute of Technology, the CRA Mentoring Project, a Colorado
State University Diversity Career Enhancement grant, and a National Science Foundation
Research Initiation Award #RIA IRI-9308573. CASI is sponsored in part by the Colorado
Advanced Technology Institute (CATI), an agency of the state of Colorado. CATI promotes
advanced technology teaching and research at universities in Colorado for the purpose of
economic development. The authors thank Li Li for implementing the system while working
as a summer research assistant and anonymous reviewers for the 1995 Knowledge Based
Software Engineering Conference for their pointers and comments.

Notes

1. This problem has been alleviated in UCPOP 4.0

References

Charles Anderson, Anneliese von Mayrhauser, and Rick Mraz. "On the Use of Neural Networks to Guide Software
Testing Activities", Procs. International Test Conference, Oct. 1995, Washington, DC.

John S. Anderson. Automating Requirements Engineering Using Artificial Intelligence Techniques. PhD thesis,
Dept. of Computer and Information Science, University of Oregon, Dec. 1993.

Anthony Barrett, Keith Golden, Scott Penberthy, and Daniel Weld. UCPOP User's Manual. Dept of Computer
Science and Engineering, University of Washington, Seattle, WA, October 1993. TR 93-09-06.

J. Bauer and A. Finger. "Test Plan Generation Using Formal Grammars", Procs. Fourth International Conference
on Software Engineering, 1979, pp. 425-432.

Franco Bazzichi and Ippolito Spadafora. "An Automatic Generator for Compiler Testing," IEEE Transactions on
Software Engineering, 1982:8(4), pp.343-353.

Ted J. Biggerstaff and Alan J. Perils. Software Reusability: Volume I, Concepts and Models, ACM Press, Fronier
Series, 1989.

Grady Booch, Object Oriented Design with Applications, "Benjamin/Cummings", 1991.
A. Celentano, S. Crespi Reghizzi, P. Delia Vigna, C. Ghezzi, G. Gramata and F. Savoretti. "Compiler Testing

using a Sentence Generator," Software-Practice and Experience, 1980:10, pp.987-918.
John J. Chilenski and Philip H. Newcomb. "Formal Specification Tools for Test Coverage Analysis", Procs. Ninth

Knowledge-Based Software Engineering Conference, September 1994, Monterey, CA, pp. 59-68.
Paul R. Cohen and Edward A. Feigenbaum. Handbook of Artificial Intelligence, volume 3, chapter Planning and

Problem Solving, pages 513-562. William Kaufraann, Inc., Los Angeles, 1982.
A.G. Duncan and J.S. Hutchison, "Using Attributed Grammars to Test Designs and Implementations," Proceedings

of the Fifth International Conference on Software Engineering, 1981, pp. 170-177.
Tsum S. Chow. "Testing Software Design Modeled by Finite State Machines," Proceedings of the First COMPSAC,

1977, pp. 58-64.
W. Deason, D. Brown, K.-H. Chang, and J. Cross. "Rule-Based Software Test Data Generator", IEEE Transactions

on Knowledge and Data Engineering, 3(1), March 1991, pp. 108-117.
Stephen Fickas and John Anderson. A proposed perspective shift: Viewing specification design as a planning

problem. Department of Computer and Information Science CIS-TR-88-15, University of Oregon, Eugene,
OR, November 1988.

Stephen Fickas and B. Robert Helm. "Knowledge Representation and Reasoning in the Design of Composite
Systems", IEEE Transactions on Software Engineering, SE-18(6), June 1992, pp. 470-482.

Tom Figliulo, Anneliese von Mayrhauser, and Richard Karcich. "Experiences with Automated System Testing
and SLEUTH", Procs. IEEE Aerospace Applications Conference 1996, February 1996.

www.manaraa.com

1 0 6 HOWE. VON MAYRHAUSER AND MRAZ

S. Fujiwara, G. von Bochman, F. Khendek, M. Amalou, and A. Ghedamsi. "Test Selection Based on Finite State
Models", IEEE Transactions on Software Engineering SE-I7, no. 10(June 1991), pp. 591-603.

J. B. Goodenough and S. L. Gerhait. "Toward a Theory of Test Data Selection", IEEE Transactions on Software
Engineering, SE-1(2), June 1975, pp. 156-173.

Dick Hamlet and Ross Taylor. "Partition Testing Does not inspire Confidence", IEEE Transactions on Software
Engineering, SE-16{12), Dec. 1990, pp. 1402-1411.

James W. Hooper and Rowena O. Chester. Software Reuse: Guidelines and Methods, Plenum Publishers, 1991.
Karen Huff and Victor Lesser. A plan-based intelligent assistant that supports the software development process. In

ACM SIGSOFT/SIGPLAN Software Engineering Symposium on Practical Software Development Environments,
Nov. 1988.

Karen Huff. Software adaptation. In Working Notes ofAAAI-92 Spring Symposium on Computational Consider­
ations in Supporting Incremental Modification and Reuse, pages 63-66, Stanford University, March 1992.

D. C. Ince. "The Automatic Generation of Test Data", Computer Journal, vol.30(l), 1987, pp. 63-69.
P. Maurer. "Generating Test Data with Enhanced Context-Free Grammars", IEEE Software, July 1990, pp. 50-55.
Glenford J. Myers. The Art of Software Testing, Wiley Series in Business Data Processing. John Wiley and Sons,

1979.
Thomas J. Ostrand and Marc J. Balcer. "The Category-Partition Method for Specifying and Generating Functional

Tests", Communications of the ACM, 31(6), June 1988, pp. 676-686.
J.S. Penberthy and D. Weld. "UCPOP: A sound, complete, partial order planner for ADL", In Proceedings

Third International Conference on Principles of Knowledge Representation and Reasoning, October 1992, pp.
103-114.

P. Purdora. "A Sentence Generator for Testing Parsers", BTT, 12(3), 1972, pp. 366-375.
Debra J. Richardson, Owen O'Malley, and Cindy Tittle. "Approaches to Specification-Based Testing", Procs.

ACM Third Symposium on Software Testing, Analysis, and Verification (TAV3), December 1993, pp. 86-96.
Robert S. Rist. Plan Identification and Re-use in Programs. In Working Notes ofAAAI-92 Spring Symposium

on Computational Considerations in Supporting Incremental Modification and Reuse, pages 67-72, Stanford
University, March 1992.

Kenneth S. Rubin and Adele Goldberg. "Object Behavior Analysis," Communications of the ACM, 35(9), Septem­
ber 1992, pp. 48-62.

Raghavan Srinivasan and Adele E. Howe. Comparison of Methods for Improving Search Efficiency in a Partial-
Order Planner. In Proceedings of the 14th International Joint Conference on Artificial Intelligence, pages
1620-1626, Montreal, Canada, August 1995.

StorageTek, StorageTek 4400 Operator's Guide, Host Software Component (VM) Rel 1.2.0, StorageTek, 1992.
Gerald A. Sussman. A computational model of skill acquisition. Technical Report Memo no. Al-TR-297, MIT

AI Lab, 1973.
Markos Z. Tsoulakas, Joe W. Duran, and Simeon C. Ntafos. "On Some Reliability Estimation Problems in Random

and Partition Testing", IEEE Transactions on Software Engineering, 19(7), July 1993, pp. 687-697.
Annehese von Mayrhauser and Steward Crawford-Hines, "Automated Testing Support for a Robot Tape Library,"

Proceedings of the Fourth International Software Reliability Engineering Conference, November 1993, pp.
6-14.

Anneliese von Mayrhauser, Richard T. Mraz, and Jeff Walls. "Domain Based Regression Testing," Proceedings
of the International Conference on Software Maintenance, Sept 1994, p. 26-35.

Anneliese von Mayrhauser, Richard Mraz, Jeff Walls, and Pete Ocken. "Domain Based Testing: Increasing Test
Case Reuse," Pmc. of the International Conference on Computer Design, October 1994, p. 484-491.

Anneliese von Mayrhauser, Jeff Walls, and Richard Mraz, "Testing AppHcations Using Domain Based Testing and
Sleuth" Proceedings of the Fifth International Software Reliability Engineering Conference, November 1994,
p. 206-215.

Annehese von Mayrhauser, Jeff Walls, and Richard Mraz. "Sleuth: A Domain Based Testing Tool," Proc. of the
International Test Conference, October 1994, p. 840-849.

Elaine J. Weyuker and Bingchiang Jeng. "Analyzing Partition Testing Strategies", IEEE Transactions on Software
Engineering, 17(7), July 1991, pp. 703-711.

Steven J. Zeil and Christian Wild. "A Knowledge Base for Software Test Refinement", Technical Report TR-93-I4,
Old Dominion University, Norfolk, VA.

www.manaraa.com

Automated Software Engineering, 4, 107-109 (1997)
© 1997 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Desert Island Column
WLADYSLAW M. TURSKI wmt@mimuw.edu.pl

Institute of Informatics, Warsaw University, Banacha 2, 02-097 Warsaw, Poland

In the Desert Island Column, authors, marooned on a desert island, write about books and/or papers, relevant to

software engineering, that they would value having with them above all others. They may be seminal, thought-

provoking or simply a pleasure to read. In a slight change to the usualformat of the column, Professor Wladyslaw

Turski has chosen to write about a book he would write on a desert island. Ed.

Once upon a time, an otherwise very generous reviewer, in an otherwise very complimentary
review of one of my books, obviously pained by the effort to consult many references quoted
in it, suggested in exasperation that the author should be sent to a desert island, without any
library sources, and made to write the book entirely from the memory. I found the idea quite
appealing (provided, of course, the island would be somewhere in the South Pacific, and
the shortage of literary nourishment would be compensated by other delights). So when
asked to write a column on the books I would take with me to a desert island, I immediately
seized the opportunity to invert the problem and - in the virtual reality of the exercise - to
satisfy the good reviewer's request at least in a sketch form.

I would like to write a, or rather "the," book covering all that a software engineer should
know. I do not want the book to be too fat, so simply adding together the contents of all
courses normally taught for a degree in software engineering is out. Dare I eliminate any
of the subjects? Considered separately, one by one, each seems far too important to be
left out. But when I mentally scan their contents, I see much of the material gets repeated,
albeit in different guises.

For instance, memory management (sharing, protection, swapping etc.) is discussed in
compilers, operating systems, databases, networking... The same few principles, algorithms
and techniques are introduced as solutions to different problems, described in terms of
these problems and, therefore, may appear different. This not only increases the volume of
what we teach, but makes the teaching less useful by conditioning the student to associate
particular versions of general principles directly with particular, isolated problems. Faced
with yet another instance of the general problem, one that by chance was not treated in the
courses they had taken, and being unaware of its general form (of its abstract statement),
software engineers educated in this fashion may be tempted to consider an unfamiliar
instance as a genuinely new problem. Depending on their intelligence, they can discover a
solution, or give up struggling; in either case they suffer unnecessarily.

So in my book, I would write about these general principles of computer programming,
and in exercises, or small-print comments, I would indicate particular, well-known practical
problems that can be solved by application of these principles. There would be no need, for
example, to make a lot of song and dance about object-oriented this or that. Concepts of
class, rules of inheritance, discipline of feature accessing, extent of scoping, indeed, even
principles of synchronization and mutual exclusion would be all introduced as basic proper-

www.manaraa.com

108 TURSKI

ties of modularity. Any particular combination thereof would be then just a simplification,
again deserving an exercise or a small-print case illustration.

(Quite early in my life I was taught Latin grammar. Ever since, I have had no real problem
with any other grammar of an ethnic language: it was always just a case of learning which
parts do not apply, and of absorbing some local terminology; no conceptual hurdles at all.
My friends who were spared the "horrors" of learning Latin grammar, keep on struggling
with grammars of each new language they try to pick up. It is only the brightest who
for themselves invent a "transitive closure" of individual grammars they learned, form an
abstract, universal grammar, which - give or take some inessential bits - turns out to be
isomorphic with Latin grammar.)

The essence of programming and program implementation, inclusive, of course, of prin­
ciples of the so-called specification and program correctness (i.e., semantic morphisms
between formal texts), would constitute the hard core of the book. Together with exercises
and small-print comments relating the principles to their various embodiments and trade
names it would be also the main part of its bulk. The remainder would be devoted to two
topics.

One would be a brief survey of the main extra-logical but measurable constraints on
programs. Here I would treat the issues of computational complexity, system reliability
and, perhaps, special requirements of real-time programming. All these relate to programs
in execution; i.e., to the processes invoked in a computing device by program application.
As with the programs themselves, a clear exposition of essential principles would lead to a
reasonably compact presentation of these seemingly diverse, practically important subjects.

The final chapter of the book would be the software-construction process seen as an
industrial undertaking. As there is not much scientific material to cover under this rubric
(and the inaccessibility of library collections would prevent any attempt to hide ignorance
behind details of case studies), I would concentrate on three fundamental observations and
their consequences.

(1) The software is written primarily to be used by a client. The ultimate measure of
its success is the client's satisfaction. This introduces the need to monitor (or, better still,
to measure) the client's reaction, and use the thus obtained information for improving the
entire process of software-making. In particular, to satisfy the client, the software may
need to enjoy qualities other than just correctness. Such extra qualities may have to be
designed into the software and into the process of its development as they hardly ever are
of the add-on variety.

(2) The software construction process consists of a repeated application of the same
pattern: a specification (a formal text) is implemented (transformed into another linguistic
system), and the thus obtained formal text (a "program") becomes the specification for the
next step. This pattern has rigid rules for actual implementation and a degree of flexible
choice in deciding the target for the current implementation (the current target linguistic
system). While the act of implementation is (at least in principle) mechanistic, the choice of
target is the creative part. The main body of the book provides the mathematics to compute
the mechanistic part; doing the creative part properly must be learned by experience.

(3) It appears that the software construction process is subject to constraints not entirely
controlled at will by managerial techniques. It also appears that some parameters of the

www.manaraa.com

DESERT ISLAND COLUMN 109

inherent dynamics of this process, specific for a class of software-objects produced and a
particular software producing organization, can be detected by judiciously chosen statistical
observations. Relating changes in such parameters to changes in the organization it may be
possible to infer how to improve the performance of the process.

I have just noted that listing the three observations I switched the style: from writing
"about" the book to writing its text (well, portions of it). Upon a short reflection I decided
to let it stand. It is yet another indication of how strongly different from the rest of the book
is the subject matter of its planned final chapter. Unfortunately, with my present knowledge,
I cannot even hope to achieve more homogeneity; on the other hand, none of these topics
can be altogether avoided in a comprehensive book on software engineering.

In the books I have published so far (Turski, 1968,1971, 1972, 1975,1978,1980, 1987),I
tended to employ many different notational conventions, both in order to follow as closely as
possible the specifics of each subject I was treating, and to convince the reader that the actual
shape of the notation is quite urelevant. In the book I would write on the island, having no
access to the sources, I would have to give up this habit. The choice of notation would be
a pleasant challenge. I have no doubt that in principle I would opt for a version of logic
calculus; the choice of a specific one would be influenced by the aesthetic considerations:
who knows how the island's environment would affect my perception of beauty.

References

Wladyslaw M. Turski, "Principles of Computer Use" (in Polish), PWN, Poland, 1968, sec. ed. 1973.
Wladyslaw M. Turski, "Data Structures" (in Polish), WNT, Poland, 1971, sec. ed. 1976, German translation:

Akaderaie Verlag, 1975.
Wladyslaw M. Turski (editor), "Programming Teaching Techniques" North-Holland, 1972.
Wladyslaw M. Turski, "Informatics. A Propaedeutic View" (in Polish), PWN, 5 editions 1975 - 1989, English

translation: North Holland, 1985.
Wladyslaw M. Turski, "Computer Programming Methodology", Heyden, 1978. Polish translation: WNT, 1978

and 1985; Russian translation: Mir, 1981.
Wladyslaw M. Turski, "Not by informatics alone" (in Polish), PIW, Poland, 1980.
Wladyslaw M. and T.S. Maibaum, "The Specification of Computer Programs", Addison-Wesley, 1987.

